3,765 research outputs found

    Modeling and Simulation of Offshore Wind Farms for Smart Cities

    Get PDF
    Wind turbine models and simulations are widely available, but the simulation of a wind farm is scarce. This chapter presents a systematic approach to simulate an offshore wind farm for smart cities. The subsystems of several variable-pitch wind turbines, namely, rotor blades, drivetrain, and induction generator, are modeled to form a wind farm. The total output power of the wind farm by considering multiple wind turbines with the wake losses (using the Jensen wake model) can be simulated with any input wind speed. In order to validate the accuracy of the simulation, a case study was performed on a German offshore wind farm called NordseeOst. The simulation shows promising results with an average error of approximately 5% when compared with the real-time output of the wind farm. The results showed that the simulation of a wind farm that often impeded by the lack of exact information is feasible before any site implementation for smart cities

    Conceptual Design of Wind Farms Through Novel Multi-Objective Swarm Optimization

    Get PDF
    Wind is one of the major sources of clean and renewable energy, and global wind energy has been experiencing a steady annual growth rate of more than 20% over the past decade. In the U.S. energy market, although wind energy is one of the fastest increasing sources of electricity generation (by annual installed capacity addition), and is expected to play an important role in the future energy demographics of this country, it has also been plagued by project underperformance and concept-to-installation delays. There are various factors affecting the quality of a wind energy project, and most of these factors are strongly coupled in their influence on the socio-economic, production, and environmental objectives of a wind energy project. To develop wind farms that are profitable, reliable, and meet community acceptance, it is critical to accomplish balance between these objectives, and therefore a clean understanding of how different design and natural factors jointly impact these objectives is much needed. In this research, a Multi-objective Wind Farm Design (MOWFD) methodology is developed, which analyzes and integrates the impact of various factors on the conceptual design of wind farms. This methodology contributes three major advancements to the wind farm design paradigm: (I) provides a new understanding of the impact of key factors on the wind farm performance under the use of different wake models; (II) explores the crucial tradeoffs between energy production, cost of energy, and the quantitative role of land usage in wind farm layout optimization (WFLO); and (III) makes novel advancements on mixed-discrete particle swarm optimization algorithm through a multi-domain diversity preservation concept, to solve complex multi-objective optimization (MOO) problems. A comprehensive sensitivity analysis of the wind farm power generation is performed to understand and compare the impact of land configuration, installed capacity decisions, incoming wind speed, and ambient turbulence on the performance of conventional array layouts and optimized wind farm layouts. For array-like wind farms, the relative importance of each factor was found to vary significantly with the choice of wake models, i.e., appreciable differences in the sensitivity indices (of up to 70%) were observed across the different wake models. In contrast, for optimized wind farm layouts, the choice of wake models was observed to have no significant impact on the sensitivity indices. The MOWFD methodology is designed to explore the tradeoffs between the concerned performance objectives and simultaneously optimize the location of turbines, the type of turbines, and the land usage. More importantly, it facilitates WFLO without prescribed conditions (e.g., fixed wind farm boundaries and number of turbines), thereby allowing a more flexible exploration of the feasible layout solutions than is possible with other existing WFLO methodologies. In addition, a novel parameterization of the Pareto is performed to quantitatively explore how the best tradeoffs between energy production and land usage vary with the installed capacity decisions. The key to the various complex MO-WFLOs performed here is the unique set of capabilities offered by the new Multi-Objective Mixed-Discrete Particle Swarm Optimization (MO-MDPSO) algorithm, developed, tested and extensively used in this dissertation. The MO-MDPSO algorithm is capable of dealing with a plethora of problem complexities, namely: multiple highly nonlinear objectives, constraints, high design space dimensionality, and a mixture of continuous and discrete design variables. Prior to applying MO-MDPSO to effectively solve complex WFLO problems, this new algorithm was tested on a large and diverse suite of popular benchmark problems; the convergence and Pareto coverage offered by this algorithm was found to be competitive with some of the most popular MOO algorithms (e.g., GAs). The unique potential of the MO-MDPSO algorithm is further established through application to the following complex practical engineering problems: (I) a disc brake design problem, (II) a multi-objective wind farm layout optimization problem, simultaneously optimizing the location of turbines, the selection of turbine types, and the site orientation, and (III) simultaneously minimizing land usage and maximizing capacity factors under varying land plot availability

    Evolutionary computation for wind farm layout optimization

    Get PDF
    This paper presents the results of the second edition of the Wind Farm Layout Optimization Competition, which was held at the 22nd Genetic and Evolutionary Computation COnference (GECCO) in 2015. During this competition, competitors were tasked with optimizing the layouts of five generated wind farms based on a simplified cost of energy evaluation function of the wind farm layouts. Online and offline APIs were implemented in C++, Java, Matlab and Python for this competition to offer a common framework for the competitors. The top four approaches out of eight participating teams are presented in this paper and their results are compared. All of the competitors' algorithms use evolutionary computation, the research field of the conference at which the competition was held. Competitors were able to downscale the optimization problem size (number of parameters) by casting the wind farm layout problem as a geometric optimization problem. This strongly reduces the number of evaluations (limited in the scope of this competition) with extremely promising results

    Uncertainty-Integrated Surrogate Modeling for Complex System Optimization

    Get PDF
    Approximation models such as surrogate models provide a tractable substitute to expensive physical simulations and an effective solution to the potential lack of quantitative models of system behavior. These capabilities not only enable the efficient design of complex systems, but is also essential for the effective analysis of physical phenomena/characteristics in the different domains of Engineering, Material Science, Biomedical Science, and various other disciplines. Since these models provide an abstraction of the real system behavior (often a low-fidelity representative) it is important to quantify the accuracy and the reliability of such approximation models without investing additional expensive system evaluations (simulations or physical experiments). Standard error measures, such as the mean squared error, the cross-validation error, and the Akaike\u27s information criterion however provide limited (often inadequate) information regarding the accuracy of the final surrogate model while other more effective dedicated error measures are tailored towards only one class of surrogate models. This lack of accuracy information and the ability to compare and test diverse surrogate models reduce the confidence in model application, restricts appropriate model selection, and undermines the effectiveness of surrogate-based optimization. A key contribution of this dissertation is the development of a new model-independent approach to quantify the fidelity of a trained surrogate model in a given region of the design domain. This method is called the Predictive Estimation of Model Fidelity (PEMF). The PEMF method is derived from the hypothesis that the accuracy of an approximation model is related to the amount of data resources leveraged to train the model . In PEMF, intermediate surrogate models are iteratively constructed over heuristic subsets of sample points. The median and the maximum errors estimated over the remaining points are used to determine the respective error distributions at each iteration. The estimated modes of the error distributions are represented as functions of the density of intermediate training points through nonlinear regression, assuming a smooth decreasing trend of errors with increasing sample density. These regression functions are then used to predict the expected median and maximum errors in the final surrogate models. It is observed that the model fidelities estimated by PEMF are up to two orders of magnitude more accurate and statistically more stable compared to those based on the popularly-used leave-one-out cross-validation method, when applied to a variety of benchmark problems. By leveraging this new paradigm in quantifying the fidelity of surrogate models, a novel automated surrogate model selection framework is also developed. This PEMF-based model selection framework is called the Concurrent Surrogate Model Selection (COSMOS). COSMOS, unlike existing model selection methods, coherently operates at all the three levels necessary to facilitate optimal selection, i.e., (1) selecting the model type, (2) selecting the kernel function type, and (3) determining the optimal values of the typically user-prescribed parameters. The selection criteria that guide optimal model selection are determined by PEMF and the search process is performed using a MINLP solver. The effectiveness of COSMOS is demonstrated by successfully applying it to different benchmark and practical engineering problems, where it offers a first-of-its-kind globally competitive model selection. In this dissertation, the knowledge about the accuracy of a surrogate estimated using PEMF is applied to also develop a novel model management approach for engineering optimization. This approach adaptively selects computational models (both physics-based models and surrogate models) of differing levels of fidelity and computational cost, to be used during optimization, with the overall objective to yield optimal designs with high-fidelity function estimates at a reasonable computational expense. In this technique, a new adaptive model switching (AMS) metric defined to guide the switching of model from one to the next higher fidelity model during the optimization process. The switching criterion is based on whether the uncertainty associated with the current model output dominates the latest improvement of the relative fitness function, where both the model output uncertainty and the function improvement (across the population) are expressed as probability distributions. This adaptive model switching technique is applied to two practical problems through Particle Swarm Optimization to successfully illustrate: (i) the computational advantage of this method over purely high-fidelity model-based optimization, and (ii) the accuracy advantage of this method over purely low-fidelity model-based optimization. Motivated by the unique capabilities of the model switching concept, a new model refinement approach is also developed in this dissertation. The model refinement approach can be perceived as an adaptive sequential sampling approach applied in surrogate-based optimization. Decisions regarding when to perform additional system evaluations to refine the model is guided by the same model-uncertainty principles as in the adaptive model switching technique. The effectiveness of this new model refinement technique is illustrated through application to practical surrogate-based optimization in the area of energy sustainability

    Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems

    Get PDF
    The reduction of greenhouse gas emissions is a major governmental goal worldwide. The main target, hopefully by 2050, is to move away from fossil fuels in the electricity sector and then switch to clean power to fuel transportation, buildings and industry. This book discusses important issues in the expanding field of wind farm modeling and simulation as well as the optimization of hybrid and micro-grid systems. Section I deals with modeling and simulation of wind farms for efficient, reliable and cost-effective optimal solutions. Section II tackles the optimization of hybrid wind/PV and renewable energy-based smart micro-grid systems

    Modeling, Simulation and Optimization of Wind Farms and Hybrid Systems

    Get PDF
    The reduction of greenhouse gas emissions is a major governmental goal worldwide. The main target, hopefully by 2050, is to move away from fossil fuels in the electricity sector and then switch to clean power to fuel transportation, buildings and industry. This book discusses important issues in the expanding field of wind farm modeling and simulation as well as the optimization of hybrid and micro-grid systems. Section I deals with modeling and simulation of wind farms for efficient, reliable and cost-effective optimal solutions. Section II tackles the optimization of hybrid wind/PV and renewable energy-based smart micro-grid systems

    Manejo de diversidad en CHC aplicado a la optimización del costo energético en parques eólicos

    Get PDF
    En este trabajo analizaremos diferentes mecanismos de manejo de diversidad para el algoritmo CHC (Crossover elitism population, Half uniform crossover combination, Cataclysm mutation) para resolver problemas de optimización en parques eólicos de energía. El algoritmo CHC convencional contiene un mecanismo de reinicio poblacional aleatorio, esto conlleva a la posibilidad de perder cierto conocimiento adquirido si no se maneja adecuadamente. Es por ello que estudiaremos otros mecanismos de reinicio poblacional que tengan en cuenta el conocimiento adquirido durante su evolución para intentar lograr mejor convergencia en los resultados. El objetivo final es minimizar el costo del KWh analizando tres variantes de reinicio poblacional y cómo impactan en los resultados finales con respecto a la versión de CHC convencional.Workshop: WASI – Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informátic

    Informed mutation of wind farm layouts to maximise energy harvest

    Get PDF
    Correct placement of turbines in a wind farm is a critical issue in wind farm design optimisation. While traditional "trial and error"-based approaches suffice for small layouts, automated approaches are required for larger wind farms with turbines numbering in the hundreds. In this paper we propose an evolutionary strategy with a novel mutation operator for identifying wind farm layouts that minimise expected velocity deficit due to wake effects. The mutation operator is based on constructing a predictive model of velocity deficits across a layout so that mutations are inherently biased towards better layouts. This makes the operator informed rather than randomised. We perform a comprehensive evaluation of our approach on five challenging simulated scenarios using a simulation approach acceptable to industry [1]. We then compare our algorithm against two baseline approaches including the Turbine Displacement Algorithm [2]. Our results indicate that our informed mutation approach works effectively, with our approach identifying layouts with the lowest aggregate velocity deficits on all five test scenarios

    Modelling hybrid renewable energy system for Philippine Merchant Marine Academy: a feasibility study

    Get PDF
    corecore