92,105 research outputs found

    On the cost-complexity of multi-context systems

    Full text link
    Multi-context systems provide a powerful framework for modelling information-aggregation systems featuring heterogeneous reasoning components. Their execution can, however, incur non-negligible cost. Here, we focus on cost-complexity of such systems. To that end, we introduce cost-aware multi-context systems, an extension of non-monotonic multi-context systems framework taking into account costs incurred by execution of semantic operators of the individual contexts. We formulate the notion of cost-complexity for consistency and reasoning problems in MCSs. Subsequently, we provide a series of results related to gradually more and more constrained classes of MCSs and finally introduce an incremental cost-reducing algorithm solving the reasoning problem for definite MCSs

    Multidimensional Context Modeling Applied to Non-Functional Analysis of Software

    Get PDF
    Context awareness is a first-class attribute of today software systems. Indeed, many applications need to be aware of their context in order to adapt their structure and behavior for offering the best quality of service even in case the software and hardware resources are limited. Modeling the context, its evolution, and its influence on the services provided by (possibly resource constrained) applications are becoming primary activities throughout the whole software life cycle, although it is still difficult to capture the multidimensional nature of context. We propose a framework for modeling and reasoning on the context and its evolution along multiple dimensions. Our approach enables (1) the representation of dependencies among heterogeneous context attributes through a formally defined semantics for attribute composition and (2) the stochastic analysis of context evolution. As a result, context can be part of a model-based software development process, and multidimensional context analysis can be used for different purposes, such as non-functional analysis. We demonstrate how certain types of analysis, not feasible with context-agnostic approaches, are enabled in our framework by explicitly representing the interplay between context evolution and non-functional attributes. Such analyses allow the identification of critical aspects or design errors that may not emerge without jointly taking into account multiple context attributes. The framework is shown at work on a case study in the eHealth domain

    Multidimensional context modeling applied to non-functional analysis of software

    Get PDF
    Context awareness is a first-class attribute of today software systems. Indeed, many applications need to be aware of their context in order to adapt their structure and behavior for offering the best quality of service even in case the software and hardware resources are limited. Modeling the context, its evolution, and its influence on the services provided by (possibly resource constrained) applications are becoming primary activities throughout the whole software life cycle, although it is still difficult to capture the multidimensional nature of context. We propose a framework for modeling and reasoning on the context and its evolution along multiple dimensions. Our approach enables (1) the representation of dependencies among heterogeneous context attributes through a formally defined semantics for attribute composition and (2) the stochastic analysis of context evolution. As a result, context can be part of a model-based software development process, and multidimensional context analysis can be used for different purposes, such as non-functional analysis. We demonstrate how certain types of analysis, not feasible with context-agnostic approaches, are enabled in our framework by explicitly representing the interplay between context evolution and non-functional attributes. Such analyses allow the identification of critical aspects or design errors that may not emerge without jointly taking into account multiple context attributes. The framework is shown at work on a case study in the eHealth domain

    Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes

    Get PDF
    The application of emerging technologies of Internet of Things (IoT) and cloud computing have increasing the popularity of smart homes, along with which, large volumes of heterogeneous data have been generating by home entities. The representation, management and application of the continuously increasing amounts of heterogeneous data in the smart home data space have been critical challenges to the further development of smart home industry. To this end, a scheme for ontology-based data semantic management and application is proposed in this paper. Based on a smart home system model abstracted from the perspective of implementing users’ household operations, a general domain ontology model is designed by defining the correlative concepts, and a logical data semantic fusion model is designed accordingly. Subsequently, to achieve high-efficiency ontology data query and update in the implementation of the data semantic fusion model, a relational-database-based ontology data decomposition storage method is developed by thoroughly investigating existing storage modes, and the performance is demonstrated using a group of elaborated ontology data query and update operations. Comprehensively utilizing the stated achievements, ontology-based semantic reasoning with a specially designed semantic matching rule is studied as well in this work in an attempt to provide accurate and personalized home services, and the efficiency is demonstrated through experiments conducted on the developed testing system for user behavior reasoning
    • …
    corecore