28,256 research outputs found

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    Travel recommendations in a mobile tourist information system

    Get PDF
    An advanced mobile tourist information system delivers information about sights and events on a tourists travel route. The system should be personalized in its interaction with the tourist. Data that can be used for personalization are: the tourists interest profile, an analysis of their travel history, and the tourists feedback about sights. Existing mobile information systems for tourists do not tailor their information delivery to the tourists interests. In this paper, we propose the use of personalised recommendations that consider all of the personal information a tourist provides. We adopt and modify techniques from recommended systems to the new application area of mobile tourist information. We propose a number of methods for personalised recommendations; and select a subset of these for implementation. This paper then presents the implemented recommended component of our TIP system for mobile tourist informatio

    Collaborative hybrid agent provision of learner needs using ontology based semantic technology

    Get PDF
    © Springer International Publishing AG 2017. This paper describes the use of Intelligent Agents and Ontologies to implement knowledge navigation and learner choice when interacting with complex information locations. The paper is in two parts: the first looks at how Agent Based Semantic Technology can be used to give users a more personalised experience as an individual. The paper then looks to generalise this technology to allow users to work with agents in hybrid group scenarios. In the context of University Learners, the paper outlines how we employ an Ontology of Student Characteristics to personalise information retrieval specifically suited to an individual’s needs. Choice is not a simple “show me your hand and make me a match” but a deliberative artificial intelligence (AI) that uses an ontologically informed agent society to consider the weighted solution paths before choosing the appropriate best. The aim is to enrich the student experience and significantly re-route the student’s journey. The paper uses knowledge-level interoperation of agents to personalise the learning space of students and deliver to them the information and knowledge to suite them best. The aim is to personalise their learning in the presentation/format that is most appropriate for their needs. The paper then generalises this Semantic Technology Framework using shared vocabulary libraries that enable individuals to work in groups with other agents, which might be other people or actually be AIs. The task they undertake is a formal assessment but the interaction mode is one of informal collaboration. Pedagogically this addresses issues of ensuring fairness between students since we can ensure each has the same experience (as provided by the same set of Agents) as each other and an individual mark may be gained. This is achieved by forming a hybrid group of learner and AI Software Agents. Different agent architectures are discussed and a worked example presented. The work here thus aims at fulfilling the student’s needs both in the context of matching their needs but also in allowing them to work in an Agent Based Synthetic Group. This in turn opens us new areas of potential collaborative technology

    Personalised trails and learner profiling within e-learning environments

    Get PDF
    This deliverable focuses on personalisation and personalised trails. We begin by introducing and defining the concepts of personalisation and personalised trails. Personalisation requires that a user profile be stored, and so we assess currently available standard profile schemas and discuss the requirements for a profile to support personalised learning. We then review techniques for providing personalisation and some systems that implement these techniques, and discuss some of the issues around evaluating personalisation systems. We look especially at the use of learning and cognitive styles to support personalised learning, and also consider personalisation in the field of mobile learning, which has a slightly different take on the subject, and in commercially available systems, where personalisation support is found to currently be only at quite a low level. We conclude with a summary of the lessons to be learned from our review of personalisation and personalised trails

    Genetic Programming for Smart Phone Personalisation

    Full text link
    Personalisation in smart phones requires adaptability to dynamic context based on user mobility, application usage and sensor inputs. Current personalisation approaches, which rely on static logic that is developed a priori, do not provide sufficient adaptability to dynamic and unexpected context. This paper proposes genetic programming (GP), which can evolve program logic in realtime, as an online learning method to deal with the highly dynamic context in smart phone personalisation. We introduce the concept of collaborative smart phone personalisation through the GP Island Model, in order to exploit shared context among co-located phone users and reduce convergence time. We implement these concepts on real smartphones to demonstrate the capability of personalisation through GP and to explore the benefits of the Island Model. Our empirical evaluations on two example applications confirm that the Island Model can reduce convergence time by up to two-thirds over standalone GP personalisation.Comment: 43 pages, 11 figure

    Personalisation and recommender systems in digital libraries

    Get PDF
    Widespread use of the Internet has resulted in digital libraries that are increasingly used by diverse communities of users for diverse purposes and in which sharing and collaboration have become important social elements. As such libraries become commonplace, as their contents and services become more varied, and as their patrons become more experienced with computer technology, users will expect more sophisticated services from these libraries. A simple search function, normally an integral part of any digital library, increasingly leads to user frustration as user needs become more complex and as the volume of managed information increases. Proactive digital libraries, where the library evolves from being passive and untailored, are seen as offering great potential for addressing and overcoming these issues and include techniques such as personalisation and recommender systems. In this paper, following on from the DELOS/NSF Working Group on Personalisation and Recommender Systems for Digital Libraries, which met and reported during 2003, we present some background material on the scope of personalisation and recommender systems in digital libraries. We then outline the working group’s vision for the evolution of digital libraries and the role that personalisation and recommender systems will play, and we present a series of research challenges and specific recommendations and research priorities for the field

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment
    • 

    corecore