5,846 research outputs found

    Energy-aware peering routing protocol for indoor hospital body area network communication

    Get PDF
    The recent research in Body Area Networks (BAN) is focused on making its communication more reliable, energy efficient, secure, and to better utilize system resources. In this paper we propose a novel BAN network architecture for indoor hospital environments, and a new mechanism of peer discovery with routing table construction that helps to reduce network traffic load, energy consumption, and improves BAN reliability. We have performed extensive simulations in the Castalia simulation environment to show that our proposed protocol has better performance in terms of reduced BAN traffic load, increased number of successful packets received by nodes, reduced number of packets forwarded by intermediate nodes, and overall lower energy consumption compared to other protocols

    Context-aware QoS provisioning for an M-health service platform

    Get PDF
    Inevitably, healthcare goes mobile. Recently developed mobile healthcare (i.e., m-health) services allow healthcare professionals to monitor mobile patient's vital signs and provide feedback to this patient anywhere at any time. Due to the nature of current supporting mobile service platforms, m-health services are delivered with a best-effort, i.e., there are no guarantees on the delivered Quality of Service (QoS). In this paper, we argue that the use of context information in an m-health service platform improves the delivered QoS. We give a first attempt to merge context information with a QoS-aware mobile service platform in the m-health services domain. We illustrate this with an epilepsy tele-monitoring scenario

    Biosignal and context monitoring: Distributed multimedia applications of body area networks in healthcare

    Get PDF
    We are investigating the use of Body Area Networks (BANs), wearable sensors and wireless communications for measuring, processing, transmission, interpretation and display of biosignals. The goal is to provide telemonitoring and teletreatment services for patients. The remote health professional can view a multimedia display which includes graphical and numerical representation of patients’ biosignals. Addition of feedback-control enables teletreatment services; teletreatment can be delivered to the patient via multiple modalities including tactile, text, auditory and visual. We describe the health BAN and a generic mobile health service platform and two context aware applications. The epilepsy application illustrates processing and interpretation of multi-source, multimedia BAN data. The chronic pain application illustrates multi-modal feedback and treatment, with patients able to view their own biosignals on their handheld device

    Extending remote patient monitoring with mobile real time clinical decision support

    Get PDF
    Large scale implementation of telemedicine services such as telemonitoring and teletreatment will generate huge amounts of clinical data. Even small amounts of data from continuous patient monitoring cannot be scrutinised in real time and round the clock by health professionals. In future huge volumes of such data will have to be routinely screened by intelligent software systems. We investigate how to make m-health systems for ambulatory care more intelligent by applying a Decision Support approach in the analysis and interpretation of biosignal data and to support adherence to evidence-based best practice such as is expressed in treatment protocols and clinical practice guidelines. The resulting Clinical Decision Support Systems must be able to accept and interpret real time streaming biosignals and context data as well as the patient’s (relatively less dynamic) clinical and administrative data. In this position paper we describe the telemonitoring/teletreatment system developed at the University of Twente, based on Body Area Network (BAN) technology, and present our vision of how BAN-based telemedicine services can be enhanced by incorporating mobile real time Clinical Decision Support. We believe that the main innovative aspects of the vision relate to the implementation of decision support on a mobile platform; incorporation of real time input and analysis of streaming\ud biosignals into the inferencing process; implementation of decision support in a distributed system; and the consequent challenges such as maintenance of consistency of knowledge, state and beliefs across a distributed environment

    Towards business model and technical platform for the service oriented context-aware mobile virtual communities

    Get PDF
    The focus of existing virtual communities is centered on a particular product or social interaction and the role of mobile devices is restricted to exchange a limited amount of contents. Herewith we envisage that the upcoming virtual communities will exploit the potential of social interaction and context information to offer personalized services to its members and mobile devices will play a significant role in this process. As a step towards this direction, in this paper we propose a business model for the mobile virtual communities in which the mobile device takes on the role of a content producer and content consumer. Though there are a number of research issues which need to be addressed to realize such virtual communities, in this paper we focus on the service requirements, architecture and open source software implementation of a technical platform for the content producer and consumer mobile devices

    A Study of Mobility Support in Wearable Health Monitoring Systems: Design Framework

    Get PDF
    International audienceThe aim of this work is to investigate main techniques and technologies enabling user's mobility in wearable health monitoring systems. For this, design requirements for key enabling mechanisms are pointed out, and a number of conceptual and technological recommendations are presented. The whole is schematized and presented into the form of a design framework covering design layers and taking in consideration patient context constraints. This work aspires to bring a further contribution for the conception and possibly the evaluation of health monitoring systems with full support of mobility offering freedom to users while enhancing their life qualit
    • 

    corecore