6,235 research outputs found

    Semi-automatic semantic enrichment of raw sensor data

    Get PDF
    One of the more recent sources of large volumes of generated data is sensor devices, where dedicated sensing equipment is used to monitor events and happenings in a wide range of domains, including monitoring human biometrics. In recent trials to examine the effects that key moments in movies have on the human body, we fitted fitted with a number of biometric sensor devices and monitored them as they watched a range of dierent movies in groups. The purpose of these experiments was to examine the correlation between humans' highlights in movies as observed from biometric sensors, and highlights in the same movies as identified by our automatic movie analysis techniques. However,the problem with this type of experiment is that both the analysis of the video stream and the sensor data readings are not directly usable in their raw form because of the sheer volume of low-level data values generated both from the sensors and from the movie analysis. This work describes the semi-automated enrichment of both video analysis and sensor data and the mechanism used to query the data in both centralised environments, and in a peer-to-peer architecture when the number of sensor devices grows to large numbers. We present and validate a scalable means of semi-automating the semantic enrichment of sensor data, thereby providing a means of large-scale sensor management

    Biometric responses to music-rich segments in films: the CDVPlex

    Get PDF
    Summarising or generating trailers for films or movies involves finding the highlights within those films, those segments where we become most afraid, happy, sad, annoyed, excited, etc. In this paper we explore three questions related to automatic detection of film highlights by measuring the physiological responses of viewers of those films. Firstly, whether emotional highlights can be detected through viewer biometrics, secondly whether individuals watching a film in a group experience similar emotional reactions as others in the group and thirdly whether the presence of music in a film correlates with the occurrence of emotional highlights. We analyse the results of an experiment known as the CDVPlex, where we monitored and recorded physiological reactions from people as they viewed films in a controlled cinema-like environment. A selection of films were manually annotated for the locations of their emotive contents. We then studied the physiological peaks identified among participants while viewing the same film and how these correlated with emotion tags and with music. We conclude that these are highly correlated and that music-rich segments of a film do act as a catalyst in stimulating viewer response, though we don't know what exact emotions the viewers were experiencing. The results of this work could impact the way in which we index movie content on PVRs for example, paying special significance to movie segments which are most likely to be highlights

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach

    Detecting complex events in user-generated video using concept classifiers

    Get PDF
    Automatic detection of complex events in user-generated videos (UGV) is a challenging task due to its new characteristics differing from broadcast video. In this work, we firstly summarize the new characteristics of UGV, and then explore how to utilize concept classifiers to recognize complex events in UGV content. The method starts from manually selecting a variety of relevant concepts, followed byconstructing classifiers for these concepts. Finally, complex event detectors are learned by using the concatenated probabilistic scores of these concept classifiers as features. Further, we also compare three different fusion operations of probabilistic scores, namely Maximum, Average and Minimum fusion. Experimental results suggest that our method provides promising results. It also shows that Maximum fusion tends to give better performance for most complex events

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach

    Aesthetic Highlight Detection in Movies Based on Synchronization of Spectators’ Reactions.

    Get PDF
    Detection of aesthetic highlights is a challenge for understanding the affective processes taking place during movie watching. In this paper we study spectators’ responses to movie aesthetic stimuli in a social context. Moreover, we look for uncovering the emotional component of aesthetic highlights in movies. Our assumption is that synchronized spectators’ physiological and behavioral reactions occur during these highlights because: (i) aesthetic choices of filmmakers are made to elicit specific emotional reactions (e.g. special effects, empathy and compassion toward a character, etc.) and (ii) watching a movie together causes spectators’ affective reactions to be synchronized through emotional contagion. We compare different approaches to estimation of synchronization among multiple spectators’ signals, such as pairwise, group and overall synchronization measures to detect aesthetic highlights in movies. The results show that the unsupervised architecture relying on synchronization measures is able to capture different properties of spectators’ synchronization and detect aesthetic highlights based on both spectators’ electrodermal and acceleration signals. We discover that pairwise synchronization measures perform the most accurately independently of the category of the highlights and movie genres. Moreover, we observe that electrodermal signals have more discriminative power than acceleration signals for highlight detection
    • …
    corecore