2,451 research outputs found

    Enhancing Innovation Through Biologically Inspired Design

    Get PDF
    Mixing upper level undergraduates majoring in engineering with those majoring in biology, we have devised a course on biologically-inspired design (BID) that provides practical training in methods and techniques that facilitate the identification and translation of biological principles into solutions for human challenges. The challenges of interdisciplinary courses generally, and the specific challenges of fostering exchange among biologists and engineers lead us to define these learning goals: (1) basic knowledge of successful examples of BID, (2) interdisciplinary communication skills, (3) knowledge about domains outside of their core training, (4) a uniquely interdisciplinary design process, and (5) how to apply existing technical knowledge to a new discipline. We developed the following course components to meet the key learning objectives: BID Lectures; Design Lectures; Found object exercises; Quantitative assessments; Analogy exercises; Research assignments; Interdisciplinary Collaboration, Mentorship; Idea Journals and Reflections. We will provide an extensive description of these elements, which we have chosen to incorporate based on our own experience with interdisciplinary communication, as well as findings from cognitive science regarding how students actually learn. This 15 week course is organized using assignments of increasing complexity that allow students to learn and apply essential skills of BID methodology and practice. Early exercises, which combine lectures, group discussions and individual assignments, have these objectives: 1) allow students to develop the necessary inter-disciplinary communication and research skills to facilitate their design project work; 2) expose students to ideation and design skills that will encourage them to work outside of their comfort zone; 3) practice the analogical reasoning skills that facilitate the successful search for and application of relevant biological concepts. This initial portion of the course stresses that BID occurs at the early phase of a design process and that identifying solutions from the biological domain requires that students have a sufficient breakdown of their problem combined with sufficient biological knowledge to suggest appropriate mappings between problem and solution. Two primary barriers are a lack of appreciation for how the evolutionary “design” process differs from human design, and the use of different terminology for describing similar processes in biology vs. engineering. We describe some teaching practices and activities that allow students to overcome these difficulties. The course culminates in a group project, which is a detailed conceptual design including a preliminary analysis of expected performance, value, and feasibility. A unique feature of the course is that it represents the efforts of not only biologists and engineers, but also contributions from cognitive scientists engaged in understanding human cognition and creativity. Our course strategy has been deeply influenced by findings in that field. We have studied the activity of classroom participants for the last three years, examining the processes they use, and intermediate and final design representations. Analysis of this has yielded a number of observations about the cognitive process of biologically inspired design that may provide insights regarding how to enhance BID education, as well as provide useful insight for professionals in the design field. Key words: biologically-inspired design (BID); interdisciplinary communicatio

    A design ideation method for novice designers

    Get PDF
    Design ideation is a core stage in the design process that begins with a design brief and results in a range of design concepts from which solutions can be selected. The success of design ideation relies upon designers’ creativity and ingenuity. In current practice, design ideation tends to be an ad hoc process which combines the designer’s experience with techniques such as sketching, brainstorming, and mock-up to develop creative solutions in response to the brief. There are notable differences in ideation performance between novice and expert designers in that experts tend to follow a more systematic process, and have more experience and knowledge of previous designs to draw on. Design ideation is more challenging for novice designers who have limited experience on which to draw and no systematic process to follow. This thesis provides a method that enhances the design ideation performance of novice designers by providing a systematic design ideation process for them to follow, and a database and associated visualisation method that gives them access to previous designs. The method was assessed through empirical evaluation experiments conducted with 101 students in the UK and South Korea. This confirmed that the method improves novice designers’ generation of creative solution concepts in response to a design brief. The research makes four contributions. The method, Knowledge-Enabled Design Ideation Method (KEDIM), provides a systematic design ideation process that includes three steps. The first step draws on a Database of Design Cases (DOS) that is supported by a database schema. DOS is a part of the research contribution that provides a structure to capture case data. DOS was validated through population with 540 design cases, and through use in the second stage of KEDIM, Perceptual Mapping Generation Software (PMGS). The core contribution of PMGS is its visualisation method that brings together selected design cases from the database and presents them in a way that enhances novice designers’ abilities to draw analogies. The final contribution is Systematic Brainstorming (SBI), where these analogies are developed through a set of specific ideation themes alongside solution concepts. KEDIM, through these three tools, improves the effectiveness of novice designers ideation by increasing the number of solution concepts generated when compared with students not using KEDIM responding to the same brief

    Enhancing creativity through Biological Stimuli during new products ideation

    Get PDF
    The development of new and innovative products consists in a competitive advantage, allowing companies to overcome competitors, maintain or even increase its market share. As the product development cycle is shortening, a greater effort is required at the ideation of new technologies and products. In this context, the bio-inspired design has been receiving attention as a creativity strengthening method. However, the majority of methods and tools proposed in this field present biological stimuli in the form of literature extracts, requiring a great cognitive effort from the design teams in abstracting principles to generate ideas. In this paper a systematic approach to biological stimuli development is presented, as well as its contribution during the ideation process. An experiment was conducted on the context of a product design course. As result, it was evidenced that the biological stimulators contributed to the increase of the ideas\u27 utility and variety, favoring the innovation process

    Fluid Transformers and Creative Analogies: Exploring Large Language Models' Capacity for Augmenting Cross-Domain Analogical Creativity

    Full text link
    Cross-domain analogical reasoning is a core creative ability that can be challenging for humans. Recent work has shown some proofs-of concept of Large language Models' (LLMs) ability to generate cross-domain analogies. However, the reliability and potential usefulness of this capacity for augmenting human creative work has received little systematic exploration. In this paper, we systematically explore LLMs capacity to augment cross-domain analogical reasoning. Across three studies, we found: 1) LLM-generated cross-domain analogies were frequently judged as helpful in the context of a problem reformulation task (median 4 out of 5 helpfulness rating), and frequently (~80% of cases) led to observable changes in problem formulations, and 2) there was an upper bound of 25% of outputs bring rated as potentially harmful, with a majority due to potentially upsetting content, rather than biased or toxic content. These results demonstrate the potential utility -- and risks -- of LLMs for augmenting cross-domain analogical creativity

    Analogical problem evolution in biologically inspired design

    Get PDF
    Biologically inspired design (BID) is a widespread and growing movement in modern design, pulled in part by the need for environmentally sustainable design and pushed partly by rapid advances in biology and the desire for creativity and innovation in design. Yet, our current understanding of cognition in BID is limited and at present there are few computational methods or tools available for supporting its practice. In this dissertation, I develop a cognitive model of BID, build computational methods and tools for supporting its practice, and describe results from deploying the methods and the tools in a Georgia Tech BID class. One key and novel finding in my cognitive study of BID is the surprisingly large degree to which biological analogues influence problem formulation and understanding in addition to generation of design solutions. I call the process by which a biological analogue influences the evolution of the problem formulation analogical problem evolution. I use the method of grounded theory to develop a knowledge schema called SR.BID (for structured representations for biologically inspired design) for representing design problem formulations. I show through case study analysis that SR.BID provides a useful analytic framework for understanding the two-way interaction between problems and solutions. I then develop two tools based on the SR.BID schema to scaffold the processes of problem formulation and analogue evaluation in BID. I deployed the two tools, the four-box method of problem specification and the T-chart method of analogical evaluation, in a Georgia Tech BID class. I show that with minimal training, the four-box method was used by students to complete design problem specifications in 2011 and 2012 with 75% of students achieving better than 80% accuracy. Finally I describe a web-based application for interactively supporting BID practice including problem formulation and analogue evaluation. Thus, my dissertation develops a cognitive model of analogical problem evolution in BID, a knowledge schema for representing problem formulations, a computational technique for evaluating biological analogues, and an interactive web-based tool for supporting BID practice. Through a better cognitive understanding of BID and computational methods and tools for supporting its practice, it also contributes to computational creativity.Ph.D

    Performance based abstraction of biomimicry design principles using prototyping

    Get PDF
    A key challenge faced by biomimicry practitioners is making the conceptual leap between biology and design, particularly regarding collaborating across these knowledge domains and developing and evaluating design principles abstracted from biology. While many tools and resources to support biomimicry design exist, most largely rely on semantic techniques supporting analogical translation of information between biology and design. However, the challenges of evaluation and collaboration are common in design practice and frequently addressed through prototyping. This study explores the utility of prototyping in the unique context of biomimicry by investigating its impact on the abstraction and transfer of design principles derived from biology as well as on cross-domain collaboration between biologists and designers. Following a survey exploring current practices of practitioners, in depth interviews provided detailed accounts of project experiences that leveraged prototyping. Four primary themes were observed: (1) Approximation; (2) The Prototyping Principle; (3) Synthesis and Testing; and (4) Validation. These themes introduce a unique abstraction and transfer process based on form-finding and collaborative performance evaluation in contrast to the widely accepted semantic language-based approaches. Our findings illustrate how designers and engineers can leverage a prototyping skillset in order to develop boundary objects between the fields of biology and design to navigate challenges uniquely associated with the biomimicry approach
    • …
    corecore