18 research outputs found

    Algorithmic solution of higher type equations

    Full text link

    A continuous computational interpretation of type theories

    Get PDF
    This thesis provides a computational interpretation of type theory validating Brouwer’s uniform-continuity principle that all functions from the Cantor space to natural numbers are uniformly continuous, so that type-theoretic proofs with the principle as an assumption have computational content. For this, we develop a variation of Johnstone’s topological topos, which consists of sheaves on a certain uniform-continuity site that is suitable for predicative, constructive reasoning. Our concrete sheaves can be described as sets equipped with a suitable continuity structure, which we call C-spaces, and their natural transformations can be regarded as continuous maps. The Kleene-Kreisel continuous functional can be calculated within the category of C-spaces. Our C-spaces form a locally cartesian closed category with a natural numbers object, and hence give models of Gödel’s system T and of dependent type theory. Moreover, the category has a fan functional that continuously compute moduli of uniform continuity, which validates the uniform-continuity principle formulated as a skolemized formula in system T and as a type via the Curry-Howard interpretation in dependent type theory. We emphasize that the construction of C-spaces and the verification of the uniform-continuity principles have been formalized in intensional Martin-Löf type theory in Agda notation

    Quantitative Continuity and Computable Analysis in Coq

    Get PDF
    We give a number of formal proofs of theorems from the field of computable analysis. Many of our results specify executable algorithms that work on infinite inputs by means of operating on finite approximations and are proven correct in the sense of computable analysis. The development is done in the proof assistant Coq and heavily relies on the Incone library for information theoretic continuity. This library is developed by one of the authors and the results of this paper extend the library. While full executability in a formal development of mathematical statements about real numbers and the like is not a feature that is unique to the Incone library, its original contribution is to adhere to the conventions of computable analysis to provide a general purpose interface for algorithmic reasoning on continuous structures. The paper includes a brief description of the most important concepts of Incone and its sub libraries mf and Metric. The results that provide complete computational content include that the algebraic operations and the efficient limit operator on the reals are computable, that the countably infinite product of a space with itself is isomorphic to a space of functions, compatibility of the enumeration representation of subsets of natural numbers with the abstract definition of the space of open subsets of the natural numbers, and that continuous realizability implies sequential continuity. We also describe many non-computational results that support the correctness of definitions from the library. These include that the information theoretic notion of continuity used in the library is equivalent to the metric notion of continuity on Baire space, a complete comparison of the different concepts of continuity that arise from metric and represented space structures and the discontinuity of the unrestricted limit operator on the real numbers and the task of selecting an element of a closed subset of the natural numbers

    Gardening with the Pythia A Model of Continuity in a Dependent Setting

    Get PDF

    Aspects Topologiques des Représentations en Analyse Calculable

    Get PDF
    Computable analysis provides a formalization of algorithmic computations over infinite mathematical objects. The central notion of this theory is the symbolic representation of objects, which determines the computation power of the machine, and has a direct impact on the difficulty to solve any given problem. The friction between the discrete nature of computations and the continuous nature of mathematical objects is captured by topology, which expresses the idea of finite approximations of infinite objects.We thoroughly study the multiple interactions between computations and topology, analysing the information that can be algorithmically extracted from a representation. In particular, we focus on the comparison between two representations of a single family of objects, on the precise relationship between algorithmic and topological complexity of problems, and on the relationship between finite and infinite representations.L’analyse calculable permet de formaliser le traitement algorithmique d’objets mathématiques infinis. La théorie repose sur une représentation symbolique des objets, dont le choix détermine les capacités de calcul de la machine, notamment sa difficulté à résoudre chaque problème donné. La friction entre le caractère discret du calcul et la nature continue des objets est capturée par la topologie, qui exprime l’idée d’approximation finie d’objets infinis.Nous étudions en profondeur les multiples interactions entre calcul et topologie, cherchant à analyser l’information qui peut être extraite algorithmiquement d’une représentation. Je me penche plus particulièrement sur la comparaison entre deux représentations d’une même famille d’objets, sur les liens détaillés entre complexité algorithmique et topologique des problèmes, ainsi que sur les relations entre représentations finies et infinies

    Selection functions, bar recursion and backward induction

    Full text link
    corecore