98 research outputs found

    Recursive generation of IPR fullerenes

    Full text link
    We describe a new construction algorithm for the recursive generation of all non-isomorphic IPR fullerenes. Unlike previous algorithms, the new algorithm stays entirely within the class of IPR fullerenes, that is: every IPR fullerene is constructed by expanding a smaller IPR fullerene unless it belongs to limited class of irreducible IPR fullerenes that can easily be made separately. The class of irreducible IPR fullerenes consists of 36 fullerenes with up to 112 vertices and 4 infinite families of nanotube fullerenes. Our implementation of this algorithm is faster than other generators for IPR fullerenes and we used it to compute all IPR fullerenes up to 400 vertices.Comment: 19 pages; to appear in Journal of Mathematical Chemistr

    Sizes of pentagonal clusters in fullerenes

    Get PDF
    Stability and chemistry, both exohedral and endohedral, of fullerenes are critically dependent on the distribution of their obligatory 12 pentagonal faces. It is well known that there are infinitely many IPR-fullerenes and that the pentagons in these fullerenes can be at an arbitrarily large distance from each other. IPR-fullerenes can be described as fullerenes in which each connected cluster of pentagons has size 1. In this paper we study the combinations of cluster sizes that can occur in fullerenes and whether the clusters can be at an arbitrarily large distance from each other. For each possible partition of the number 12, we are able to decide whether the partition describes the sizes of pentagon clusters in a possible fullerene, and state whether the different clusters can be at an arbitrarily large distance from each other. We will prove that all partitions with largest cluster of size 5 or less can occur in an infinite number of fullerenes with the clusters at an arbitrarily large distance of each other, that 9 partitions occur in only a finite number of fullerene isomers and that 15 partitions do not occur at all in fullerenes

    A curious family of convex benzenoids and their altans

    Get PDF
    The altan graph of G, a(G, H), is constructed from graph G by choosing an attachment set H from the vertices of G and attaching vertices of H to alternate vertices of a new perimeter cycle of length 2|H|. When G is a polycyclic plane graph with maximum degree 3, the natural choice for the attachment set is to take all perimeter degree-2 vertices in the order encountered in a walk around the perimeter. The construction has implications for the electronic structure and chemistry of carbon nanostructures with molecular graph a(G, H), as kernel eigenvectors of the altan correspond to non-bonding π molecular orbitals of the corresponding unsaturated hydrocarbon. Benzenoids form an important subclass of carbon nanostructures. A convex benzenoid has a boundary on which all vertices of degree 3 have exactly two neighbours of degree 2. The nullity of a graph is the dimension of the kernel of its adjacency matrix. The possible values for the excess nullity of a(G, H) over that of G are 2, 1, or 0. Moreover, altans of benzenoids have nullity at least 1. Examples of benzenoids where the excess nullity is 2 were found recently. It has been conjectured that the excess nullity when G is a convex benzenoid is at most 1. Here, we exhibit an infinite family of convex benzenoids with 3-fold dihedral symmetry (point group D3h) where nullity increases from 2 to 3 under altanisation. This family accounts for all known examples with the excess nullity of 1 where the parent graph is a singular convex benzenoid

    Generation algorithms for mathematical and chemical problems

    Get PDF

    Energy-Efficient Digital Circuit Design using Threshold Logic Gates

    Get PDF
    abstract: Improving energy efficiency has always been the prime objective of the custom and automated digital circuit design techniques. As a result, a multitude of methods to reduce power without sacrificing performance have been proposed. However, as the field of design automation has matured over the last few decades, there have been no new automated design techniques, that can provide considerable improvements in circuit power, leakage and area. Although emerging nano-devices are expected to replace the existing MOSFET devices, they are far from being as mature as semiconductor devices and their full potential and promises are many years away from being practical. The research described in this dissertation consists of four main parts. First is a new circuit architecture of a differential threshold logic flipflop called PNAND. The PNAND gate is an edge-triggered multi-input sequential cell whose next state function is a threshold function of its inputs. Second a new approach, called hybridization, that replaces flipflops and parts of their logic cones with PNAND cells is described. The resulting \hybrid circuit, which consists of conventional logic cells and PNANDs, is shown to have significantly less power consumption, smaller area, less standby power and less power variation. Third, a new architecture of a field programmable array, called field programmable threshold logic array (FPTLA), in which the standard lookup table (LUT) is replaced by a PNAND is described. The FPTLA is shown to have as much as 50% lower energy-delay product compared to conventional FPGA using well known FPGA modeling tool called VPR. Fourth, a novel clock skewing technique that makes use of the completion detection feature of the differential mode flipflops is described. This clock skewing method improves the area and power of the ASIC circuits by increasing slack on timing paths. An additional advantage of this method is the elimination of hold time violation on given short paths. Several circuit design methodologies such as retiming and asynchronous circuit design can use the proposed threshold logic gate effectively. Therefore, the use of threshold logic flipflops in conventional design methodologies opens new avenues of research towards more energy-efficient circuits.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Applications of finite reflection groups in Fourier analysis and symmetry breaking of polytopes

    Full text link
    Cette thèse présente une étude des applications des groupes de réflexion finis aux problems liés aux réseaux bidimensionnels et aux polytopes tridimensionnels. Plusieurs familles de fonctions orbitales, appelées fonctions orbitales de Weyl, sont associées aux groupes de réflexion cristallographique. Les propriétés exceptionnelles de ces fonctions, telles que l’orthogonalité continue et discrète, permettent une analyse de type Fourier sur le domaine fondamental d’un groupe de Weyl affine correspondant. Dans cette considération, les fonctions d’orbite de Weyl constituent des outils efficaces pour les transformées discrètes de type Fourier correspondantes connues sous le nom de transformées de Fourier–Weyl. Cette recherche limite notre attention aux fonctions d’orbite de Weyl symétriques et antisymétriques à deux variables du groupe de réflexion cristallographique A2. L’objectif principal est de décomposer deux types de transformations de Fourier–Weyl du réseau de poids correspondant en transformées plus petites en utilisant la technique de division centrale. Pour les cas non cristallographiques, nous définissons les indices de degré pair et impair pour les orbites des groupes de réflexion non cristallographique avec une symétrie quintuple en utilisant un remplacement de représentation-orbite. De plus, nous formulons l’algorithme qui permet de déterminer les structures de polytopes imbriquées. Par ailleurs, compte tenu de la pertinence de la symétrie icosaédrique pour la description de diverses molécules sphériques et virus, nous étudions la brisure de symétrie des polytopes doubles de type non cristallographique et des structures tubulaires associées. De plus, nous appliquons une procédure de stellation à la famille des polytopes considérés. Puisque cette recherche se concentre en partie sur les fullerènes icosaédriques, nous présentons la construction des nanotubes de carbone correspondants. De plus, l’approche considérée pour les cas non cristallographiques est appliquée aux structures cristallographiques. Nous considérons un mécanisme de brisure de symétrie appliqué aux polytopes obtenus en utilisant les groupes Weyl tridimensionnels pour déterminer leurs extensions structurelles possibles en nanotubes.This thesis presents a study of applications of finite reflection groups to the problems related to two-dimensional lattices and three-dimensional polytopes. Several families of orbit functions, known as Weyl orbit functions, are associated with the crystallographic reflection groups. The exceptional properties of these functions, such as continuous and discrete orthogonality, permit Fourier-like analysis on the fundamental domain of a corresponding affine Weyl group. In this consideration, Weyl orbit functions constitute efficient tools for corresponding Fourier-like discrete transforms known as Fourier–Weyl transforms. This research restricts our attention to the two-variable symmetric and antisymmetric Weyl orbit functions of the crystallographic reflection group A2. The main goal is to decompose two types of the corresponding weight lattice Fourier–Weyl transforms into smaller transforms using the central splitting technique. For the non-crystallographic cases, we define the even- and odd-degree indices for orbits of the non-crystallographic reflection groups with 5-fold symmetry by using a representation-orbit replacement. Besides, we formulate the algorithm that allows determining the structures of nested polytopes. Moreover, in light of the relevance of the icosahedral symmetry to the description of various spherical molecules and viruses, we study symmetry breaking of the dual polytopes of non-crystallographic type and related tube-like structures. As well, we apply a stellation procedure to the family of considered polytopes. Since this research partly focuses on the icosahedral fullerenes, we present the construction of the corresponding carbon nanotubes. Furthermore, the approach considered for the non-crystallographic cases is applied to crystallographic structures. We consider a symmetry-breaking mechanism applied to the polytopes obtained using the three-dimensional Weyl groups to determine their possible structural extensions into nanotubes

    Full Issue

    Get PDF

    Cellulose based materials as a template for the synthesis of copper nanoparticles for antimicrobial applications

    Get PDF
    Copper has been used as a broad-spectrum biocide for centuries, showing effective antimicrobial performance against bacteria, fungi and viruses. Among various forms of copper, copper nanoparticles is attracting particular attention because of its high surface area and crystal morphology that will enhance copper antimicrobial properties. However, the high tendency of copper particles to aggregate at a nanoscale remains as a drawback for the development of copper-based nanostructured products. In this research, cellulose-based materials were utilized as a template and stabilizer for copper nanoparticles, and the resulting hybrid material was used as bi-functional material in thermoplastic resins improving the final antimicrobial and mechanical performance of the composites. This research work was divided in the following stages: 1) developing of a simple way to synthesize copper nanoparticles using cellulose raw material as template and stabilizer for copper; 2) evaluating the antimicrobial, thermal, mechanical, and copper release performance of films prepared by adding the hybrid cellulose-copper nanoparticles into a thermoplastic resin using a wet process; 3) investigating and characterizing composite materials after the incorporation of hybrids cellulose-copper nanoparticles on thermoplastic resins using a extrusion/film formation process (dry process); 4) evaluating drying methodologies to dry hybrid cellulose-copper nanoparticles suspensions determining their morphology, particle size, oxidation state of copper and copper crystallite size
    • …
    corecore