4,235 research outputs found

    Monochromatic loose paths in multicolored kk-uniform cliques

    Full text link
    For integers k2k\ge 2 and 0\ell\ge 0, a kk-uniform hypergraph is called a loose path of length \ell, and denoted by P(k)P_\ell^{(k)}, if it consists of \ell edges e1,,ee_1,\dots,e_\ell such that eiej=1|e_i\cap e_j|=1 if ij=1|i-j|=1 and eiej=e_i\cap e_j=\emptyset if ij2|i-j|\ge2. In other words, each pair of consecutive edges intersects on a single vertex, while all other pairs are disjoint. Let R(P(k);r)R(P_\ell^{(k)};r) be the minimum integer nn such that every rr-edge-coloring of the complete kk-uniform hypergraph Kn(k)K_n^{(k)} yields a monochromatic copy of P(k)P_\ell^{(k)}. In this paper we are mostly interested in constructive upper bounds on R(P(k);r)R(P_\ell^{(k)};r), meaning that on the cost of possibly enlarging the order of the complete hypergraph, we would like to efficiently find a monochromatic copy of P(k)P_\ell^{(k)} in every coloring. In particular, we show that there is a constant c>0c>0 such that for all k2k\ge 2, 3\ell\ge3, 2rk12\le r\le k-1, and nk(+1)r(1+ln(r))n\ge k(\ell+1)r(1+\ln(r)), there is an algorithm such that for every rr-edge-coloring of the edges of Kn(k)K_n^{(k)}, it finds a monochromatic copy of P(k)P_\ell^{(k)} in time at most cnkcn^k. We also prove a non-constructive upper bound R(P(k);r)(k1)rR(P_\ell^{(k)};r)\le(k-1)\ell r

    Density version of the Ramsey problem and the directed Ramsey problem

    Get PDF
    We discuss a variant of the Ramsey and the directed Ramsey problem. First, consider a complete graph on nn vertices and a two-coloring of the edges such that every edge is colored with at least one color and the number of bicolored edges ERB|E_{RB}| is given. The aim is to find the maximal size ff of a monochromatic clique which is guaranteed by such a coloring. Analogously, in the second problem we consider semicomplete digraph on nn vertices such that the number of bi-oriented edges Ebi|E_{bi}| is given. The aim is to bound the size FF of the maximal transitive subtournament that is guaranteed by such a digraph. Applying probabilistic and analytic tools and constructive methods we show that if ERB=Ebi=p(n2)|E_{RB}|=|E_{bi}| = p{n\choose 2}, (p[0,1)p\in [0,1)), then f,F<Cplog(n)f, F < C_p\log(n) where CpC_p only depend on pp, while if m=(n2)ERB<n3/2m={n \choose 2} - |E_{RB}| <n^{3/2} then f=Θ(n2m+n)f= \Theta (\frac{n^2}{m+n}). The latter case is strongly connected to Tur\'an-type extremal graph theory.Comment: 17 pages. Further lower bound added in case $|E_{RB}|=|E_{bi}| = p{n\choose 2}

    On the minimum degree of minimal Ramsey graphs for multiple colours

    Full text link
    A graph G is r-Ramsey for a graph H, denoted by G\rightarrow (H)_r, if every r-colouring of the edges of G contains a monochromatic copy of H. The graph G is called r-Ramsey-minimal for H if it is r-Ramsey for H but no proper subgraph of G possesses this property. Let s_r(H) denote the smallest minimum degree of G over all graphs G that are r-Ramsey-minimal for H. The study of the parameter s_2 was initiated by Burr, Erd\H{o}s, and Lov\'{a}sz in 1976 when they showed that for the clique s_2(K_k)=(k-1)^2. In this paper, we study the dependency of s_r(K_k) on r and show that, under the condition that k is constant, s_r(K_k) = r^2 polylog r. We also give an upper bound on s_r(K_k) which is polynomial in both r and k, and we determine s_r(K_3) up to a factor of log r

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201
    corecore