1,412 research outputs found

    Splines and Wavelets on Geophysically Relevant Manifolds

    Full text link
    Analysis on the unit sphere S2\mathbb{S}^{2} found many applications in seismology, weather prediction, astrophysics, signal analysis, crystallography, computer vision, computerized tomography, neuroscience, and statistics. In the last two decades, the importance of these and other applications triggered the development of various tools such as splines and wavelet bases suitable for the unit spheres S2\mathbb{S}^{2},   S3\>\>\mathbb{S}^{3} and the rotation group SO(3)SO(3). Present paper is a summary of some of results of the author and his collaborators on generalized (average) variational splines and localized frames (wavelets) on compact Riemannian manifolds. The results are illustrated by applications to Radon-type transforms on Sd\mathbb{S}^{d} and SO(3)SO(3).Comment: The final publication is available at http://www.springerlink.co

    Localisation of directional scale-discretised wavelets on the sphere

    Get PDF
    Scale-discretised wavelets yield a directional wavelet framework on the sphere where a signal can be probed not only in scale and position but also in orientation. Furthermore, a signal can be synthesised from its wavelet coefficients exactly, in theory and practice (to machine precision). Scale-discretised wavelets are closely related to spherical needlets (both were developed independently at about the same time) but relax the axisymmetric property of needlets so that directional signal content can be probed. Needlets have been shown to satisfy important quasi-exponential localisation and asymptotic uncorrelation properties. We show that these properties also hold for directional scale-discretised wavelets on the sphere and derive similar localisation and uncorrelation bounds in both the scalar and spin settings. Scale-discretised wavelets can thus be considered as directional needlets.Comment: 28 pages, 8 figures, minor changes to match version accepted for publication by ACH

    Relationships among Interpolation Bases of Wavelet Spaces and Approximation Spaces

    Full text link
    A multiresolution analysis is a nested chain of related approximation spaces.This nesting in turn implies relationships among interpolation bases in the approximation spaces and their derived wavelet spaces. Using these relationships, a necessary and sufficient condition is given for existence of interpolation wavelets, via analysis of the corresponding scaling functions. It is also shown that any interpolation function for an approximation space plays the role of a special type of scaling function (an interpolation scaling function) when the corresponding family of approximation spaces forms a multiresolution analysis. Based on these interpolation scaling functions, a new algorithm is proposed for constructing corresponding interpolation wavelets (when they exist in a multiresolution analysis). In simulations, our theorems are tested for several typical wavelet spaces, demonstrating our theorems for existence of interpolation wavelets and for constructing them in a general multiresolution analysis
    • …
    corecore