133,463 research outputs found

    Adjoint Functors, Projectivization, and Differentiation Algorithms for Representations of Partially Ordered Sets

    Get PDF
    Adjoint functors and projectivization in representation theory of partially ordered sets are used to generalize the algorithms of differentiation by a maximal and by a minimal point. Conceptual explanations are given for the combinatorial construction of the derived set and for the differentiation functor

    On the Semantics of Partially Ordered Bases

    Get PDF
    International audienceThis paper presents first results toward the extension of possibilistic logic when the total order on formulas is replaced by a partial preorder. Few works have dealt with this matter in the past but they include some by Halpern, and Benferhat et al. Here we focus on semantic aspects, namely the construction of a partial order on interpretations from a partial order on formulas and conversely. It requires the capability of inducing a partial order on subsets of a set from a partial order on its elements. The difficult point lies in the fact that equivalent definitions in the totally ordered case are no longer equivalent in the partially ordered one. We give arguments for selecting one approach extending comparative possibility and its preadditive refinement, pursuing some previous works by Halpern. It comes close to non-monotonic inference relations in the style of Kraus Lehmann and Magidor. We define an intuitively appealing notion of closure of a partially ordered belief base from a semantic standpoint, and show its limitations in terms of expressiveness, due to the fact that a partial ordering on subsets of a set cannot be expressed by means of a single partial order on the sets of elements. We also discuss several existing languages and syntactic inference techniques devised for reasoning from partially ordered belief bases in the light of this difficulty. The long term purpose is to find a proof method adapted to partially ordered formulas, liable of capturing a suitable notion of semantic closure

    On Sharp Identification Regions for Regression Under Interval Data

    Get PDF
    The reliable analysis of interval data (coarsened data) is one of the most promising applications of imprecise probabilities in statistics. If one refrains from making untestable, and often materially unjustified, strong assumptions on the coarsening process, then the empirical distribution of the data is imprecise, and statistical models are, in Manski’s terms, partially identified. We first elaborate some subtle differences between two natural ways of handling interval data in the dependent variable of regression models, distinguishing between two different types of identification regions, called Sharp Marrow Region (SMR) and Sharp Collection Region (SCR) here. Focusing on the case of linear regression analysis, we then derive some fundamental geometrical properties of SMR and SCR, allowing a comparison of the regions and providing some guidelines for their canonical construction. Relying on the algebraic framework of adjunctions of two mappings between partially ordered sets, we characterize SMR as a right adjoint and as the monotone kernel of a criterion function based mapping, while SCR is indeed interpretable as the corresponding monotone hull. Finally we sketch some ideas on a compromise between SMR and SCR based on a set-domained loss function. This paper is an extended version of a shorter paper with the same title, that is conditionally accepted for publication in the Proceedings of the Eighth International Symposium on Imprecise Probability: Theories and Applications. In the present paper we added proofs and the seventh chapter with a small Monte-Carlo-Illustration, that would have made the original paper too long
    corecore