209 research outputs found

    Changing the focus: worker-centric optimization in human-in-the-loop computations

    Get PDF
    A myriad of emerging applications from simple to complex ones involve human cognizance in the computation loop. Using the wisdom of human workers, researchers have solved a variety of problems, termed as “micro-tasks” such as, captcha recognition, sentiment analysis, image categorization, query processing, as well as “complex tasks” that are often collaborative, such as, classifying craters on planetary surfaces, discovering new galaxies (Galaxyzoo), performing text translation. The current view of “humans-in-the-loop” tends to see humans as machines, robots, or low-level agents used or exploited in the service of broader computation goals. This dissertation is developed to shift the focus back to humans, and study different data analytics problems, by recognizing characteristics of the human workers, and how to incorporate those in a principled fashion inside the computation loop. The first contribution of this dissertation is to propose an optimization framework and a real world system to personalize worker’s behavior by developing a worker model and using that to better understand and estimate task completion time. The framework judiciously frames questions and solicits worker feedback on those to update the worker model. Next, improving workers skills through peer interaction during collaborative task completion is studied. A suite of optimization problems are identified in that context considering collaborativeness between the members as it plays a major role in peer learning. Finally, “diversified” sequence of work sessions for human workers is designed to improve worker satisfaction and engagement while completing tasks

    Distributing Tourists Among POIs with an Adaptive Trip Recommendation System

    Get PDF
    Traveling is part of many people leisure activities and an increasing fraction of the economy comes from the tourism. Given a destination, the information about the different attractions, or points of interest (POIs), can be found on many sources. Among these attractions, finding the ones that could be of interest for a specific user represents a challenging task. Travel recommendation systems deal with this type of problems. Most of the solution in the literature does not take into account the impact of the suggestions on the level of crowding of POIs. This paper considers the trip planning problem focusing on user balancing among the different POIs. To this aim, we consider the effects of the previous recommendations, as well as estimates based on historical data, while devising a new recommendation. The problem is formulated as a multi-objective optimization problem, and a recommendation engine has been designed and implemented for exploring the solution space in near real-time, through a distributed version of the Simulated Annealing approach. We test our solution using a real dataset of users visiting the POIs of a touristic city, and we show that we are able to provide high quality recommendations, yet maintaining the attractions not overcrowded

    Modeling users interacting with smart devices

    Get PDF

    Fairness in Recommendation: Foundations, Methods and Applications

    Full text link
    As one of the most pervasive applications of machine learning, recommender systems are playing an important role on assisting human decision making. The satisfaction of users and the interests of platforms are closely related to the quality of the generated recommendation results. However, as a highly data-driven system, recommender system could be affected by data or algorithmic bias and thus generate unfair results, which could weaken the reliance of the systems. As a result, it is crucial to address the potential unfairness problems in recommendation settings. Recently, there has been growing attention on fairness considerations in recommender systems with more and more literature on approaches to promote fairness in recommendation. However, the studies are rather fragmented and lack a systematic organization, thus making it difficult to penetrate for new researchers to the domain. This motivates us to provide a systematic survey of existing works on fairness in recommendation. This survey focuses on the foundations for fairness in recommendation literature. It first presents a brief introduction about fairness in basic machine learning tasks such as classification and ranking in order to provide a general overview of fairness research, as well as introduce the more complex situations and challenges that need to be considered when studying fairness in recommender systems. After that, the survey will introduce fairness in recommendation with a focus on the taxonomies of current fairness definitions, the typical techniques for improving fairness, as well as the datasets for fairness studies in recommendation. The survey also talks about the challenges and opportunities in fairness research with the hope of promoting the fair recommendation research area and beyond.Comment: Accepted by ACM Transactions on Intelligent Systems and Technology (TIST

    Human-AI complex task planning

    Get PDF
    The process of complex task planning is ubiquitous and arises in a variety of compelling applications. A few leading examples include designing a personalized course plan or trip plan, designing music playlists/work sessions in web applications, or even planning routes of naval assets to collaboratively discover an unknown destination. For all of these aforementioned applications, creating a plan requires satisfying a basic construct, i.e., composing a sequence of sub-tasks (or items) that optimizes several criteria and satisfies constraints. For instance, in course planning, sub-tasks or items are core and elective courses, and degree requirements capture their complex dependencies as constraints. In trip planning, sub-tasks are points of interest (POIs) and constraints represent time and monetary budget, or user-specified requirements. Needless to say, task plans are to be individualized and designed considering uncertainty. When done manually, the process is human-intensive and tedious, and unlikely to scale. The goal of this dissertation is to present computational frameworks that synthesize the capabilities of human and AI algorithms to enable task planning at scale while satisfying multiple objectives and complex constraints. This dissertation makes significant contributions in four main areas, (i) proposing novel models, (ii) designing principled scalable algorithms, (iii) conducting rigorous experimental analysis, and (iv) deploying designed solutions in the real-world. A suite of constrained and multi-objective optimization problems has been formalized, with a focus on their applicability across diverse domains. From an algorithmic perspective, the dissertation proposes principled algorithms with theoretical guarantees adapted from discrete optimization techniques, as well as Reinforcement Learning based solutions. The memory and computational efficiency of these algorithms have been studied, and optimization opportunities have been proposed. The designed solutions are extensively evaluated on various large-scale real-world and synthetic datasets and compared against multiple baseline solutions after appropriate adaptation. This dissertation also presents user study results involving human subjects to validate the effectiveness of the proposed models. Lastly, a notable outcome of this dissertation is the deployment of one of the developed solutions at the Naval Postgraduate School. This deployment enables simultaneous route planning for multiple assets that are robust to uncertainty under multiple contexts
    • …
    corecore