151 research outputs found

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging

    Full text link
    The implementation challenges of cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging are discussed and work on the subject is reviewed. System architecture and sensor fusion are identified as key challenges. A partially decentralized system architecture based on step-wise inertial navigation and step-wise dead reckoning is presented. This architecture is argued to reduce the computational cost and required communication bandwidth by around two orders of magnitude while only giving negligible information loss in comparison with a naive centralized implementation. This makes a joint global state estimation feasible for up to a platoon-sized group of agents. Furthermore, robust and low-cost sensor fusion for the considered setup, based on state space transformation and marginalization, is presented. The transformation and marginalization are used to give the necessary flexibility for presented sampling based updates for the inter-agent ranging and ranging free fusion of the two feet of an individual agent. Finally, characteristics of the suggested implementation are demonstrated with simulations and a real-time system implementation.Comment: 14 page

    CrowdFusion: Multi-Signal Fusion SLAM Positioning Leveraging Visible Light

    Get PDF
    With the fast development of location-based services, an ubiquitous indoor positioning approach with high accuracy and low calibration has become increasingly important. In this work, we target on a crowdsourcing approach with zero calibration effort based on visible light, magnetic field and WiFi to achieve sub-meter accuracy. We propose a CrowdFusion Simultaneous Localization and Mapping (SLAM) comprised of coarse-grained and fine-grained trace merging respectively based on the Iterative Closest Point (ICP) SLAM and GraphSLAM. ICP SLAM is proposed to correct the relative locations and directions of crowdsourcing traces and GraphSLAM is further adopted for fine-grained pose optimization. In CrowdFusion SLAM, visible light is used to accurately detect loop closures and magnetic field to extend the coverage. According to the merged traces, we construct a radio map with visible light and WiFi fingerprints. An enhanced particle filter fusing inertial sensors, visible light, WiFi and floor plan is designed, in which visible light fingerprinting is used to improve the accuracy and increase the resampling/rebooting efficiency. We evaluate CrowdFusion based on comprehensive experiments. The evaluation results show a mean accuracy of 0.67m for the merged traces and 0.77m for positioning, merely replying on crowdsourcing traces without professional calibration

    A Review of pedestrian indoor positioning systems for mass market applications

    Get PDF
    In the last decade, the interest in Indoor Location Based Services (ILBS) has increased stimulating the development of Indoor Positioning Systems (IPS). In particular, ILBS look for positioning systems that can be applied anywhere in the world for millions of users, that is, there is a need for developing IPS for mass market applications. Those systems must provide accurate position estimations with minimum infrastructure cost and easy scalability to different environments. This survey overviews the current state of the art of IPSs and classifies them in terms of the infrastructure and methodology employed. Finally, each group is reviewed analysing its advantages and disadvantages and its applicability to mass market applications

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements

    Estimation Algorithms for Non-Gaussian State-Space Models with Application to Positioning

    Get PDF
    State-space models (SSMs) are used to model systems with hidden time-varying state and observable measurement output. In statistical SSMs, the state dynamics is assumed known up to a random term referred to as the process noise, and the measurements contain random measurement noise. Kalman filter (KF) and Rauch– Tung–Striebel smoother (RTSS) are widely-applied closed-form algorithms that provide the parameters of the exact Bayesian filtering and smoothing distributions for discrete-time linear statistical SSMs where the process and measurement noises follow Gaussian distributions. However, when the SSM involves nonlinear functions and/or non-Gaussian noises, the Bayesian filtering and smoothing distributions cannot in general be solved using closed-form algorithms. This thesis addresses approximate Bayesian time-series inference for two positioning-related problems where the assumption of Gaussian noises cannot capture all useful knowledge of the considered system’s statistical properties: map-assisted indoor positioning and positioning using time-delay measurements.The motion constraints imposed by the indoor map are typically incorporated in the position estimate using the particle filter (PF) algorithm. The PF is a Monte Carlo algorithm especially suited for statistical SSMs where the Bayesian posterior distributions are too complicated to be adequately approximated using a well-known distribution family with a low-dimensional parameter space. In mapassisted indoor positioning, the trajectories that cross walls or floor levels get a low probability in the model. In this thesis, improvements to three different PF algorithms for map-assisted indoor positioning are proposed and compared. In the wall-collision PF, weighted random samples, also known as particles, are moved based on inertial sensor measurements, and the particles that collide with the walls are downweighted. When the inertial sensor measurements are very noisy, map information is used to guide the particles such that fewer particles collide with the walls, which implies that more particles contribute to the estimation. When no inertial sensor information is used, the particles are moved along the links of a graph that is dense enough to approximate the set of expected user paths.Time-delay based ranging measurements of e.g. ultra-wideband (UWB) and Global Navigation Satellite Systems (GNSSs) contain occasional positive measurement errors that are large relative to the majority of the errors due to multipath effects and denied line of sight. In this thesis, computationally efficient approximate Bayesian filters and smoothers are proposed for statistical SSMs where the measurement noise follows a skew t -distribution, and the algorithms are applied to positioning using time-delay based ranging measurements. The skew t -distribution is an extension of the Gaussian distribution, which has two additional parameters that affect the heavytailedness and skewness of the distribution. When the measurement noise model is heavy-tailed, the optimal Bayesian algorithm is robust to occasional large measurement errors, and when the model is positively (or negatively) skewed, the algorithms account for the fact that most large errors are known to be positive (or negative). Therefore, the skew t -distribution is more flexible than the Gaussian distribution and captures more statistical features of the error distributions of UWB and GNSS measurements. Furthermore, the skew t -distribution admits a conditionally Gaussian hierarchical form that enables approximating the filtering and smoothing posteriors with Gaussian distributions using variational Bayes (VB) algorithms. The proposed algorithms can thus be computationally efficient compared to Monte Carlo algorithms especially when the state is high-dimensional. It is shown in this thesis that the skew-t filter improves the accuracy of UWB based indoor positioning and GNSS based outdoor positioning in urban areas compared to the extended KF. The skew-t filter’s computational burden is higher than that of the extended KF but of the same magnitude.Tila-avaruusmalleilla mallinnetaan järjestelmiä, joilla on tuntema-ton ajassa muuttuva tila sekä mitatattava ulostulo. Tilastollisissa tila-avaruusmalleissa järjestelmän tilan muutos tunnetaan lukuunotta-matta prosessikohinaksi kutsuttua satunnaista termiä, ja mittauk-set sisältävät satunnaista mittauskohinaa. Kalmanin suodatin sekäRauchin Tungin ja Striebelin siloitin ovat yleisesti käytettyjä sulje-tun muodon estimointialgoritmeja, jotka tuottavat tarkat bayesiläi-set suodatus- ja siloitusjakaumat diskreettiaikaisille lineaarisille ti-lastollisille tila-avaruusmalleille, joissa prosessi- ja mittauskohinatnoudattavat gaussisia jakaumia. Jos käsiteltyyn tila-avaruusmalliinkuitenkin liittyy epälineaarisia funktioita tai epägaussisia kohinoita,bayesiläisiä suodatus- ja siloitusjakaumia ei yleensä voida ratkais-ta suljetun muodon algoritmeilla. Tässä väitöskirjassa tutkitaan ap-proksimatiivista bayesiläistä aikasarjapäättelyä ja sen soveltamistakahteen paikannusongelmaan, joissa gaussinen jakauma ei mallinnariittävän hyvin kaikkea hyödyllistä tietoa tutkitun järjestelmän tilas-tollisista ominaisuuksista: kartta-avusteinen sisätilapaikannus sekäsignaalin kulkuaikamittauksiin perustuva paikannus.Sisätilakartan tuottamat liikerajoitteet voidaan liittää paikkaestimaat-tiin käyttäen partikkelisuodattimeksi kutsuttua algoritmia. Partik-kelisuodatin on Monte Carlo -algoritmi, joka soveltuu erityisesti ti-lastollisille tila-avaruusmalleille, joissa bayesiläisen posteriorijakau-man tiheysfunktio on niin monimutkainen, että sen approksimointitunnetuilla matalan parametridimension jakaumilla ei ole mielekäs-tä. Kartta-avusteisessa sisätilapaikannuksessa reitit, jotka leikkaavatseiniä tai kerrostasoja, saavat muita pienemmät todennäköisyydet.Tässä väitöskirjassa esitetään parannuksia kolmeen eri partikkelisuo-datusalgoritmiin, joita sovelletaan kartta-avusteiseen sisätilapaikan-vnukseen. Seinätörmayssuodattimessa painolliset satunnaisnäytteeteli partikkelit liikkuvat inertiasensorimittausten mukaisesti, ja sei-nään törmäävät partikkelit saavat pienet painot. Kun inertiasensori-mittauksissa on paljon kohinaa, partikkeleita voidaan ohjata siten,että seinätörmäysten määrä vähenee, jolloin suurempi osa partikke-leista vaikuttaa estimaattiin. Kun inertiasensorimittauksia ei käytetälainkaan, sisätilakartta voidaan esittää graafina, jonka kaarilla partik-kelit liikkuvat ja joka on riittävän tiheä approksimoimaan odotetta-vissa olevien reittien joukkoa.Esimerkiksi laajan taajuuskaistan radioista (UWB, ultra-wideband)tai paikannussatelliiteista saatavat radiosignaalin kulkuaikaan pe-rustuvat etäisyysmittaukset taas voivat sisältää monipolkuheijastus-ten ja suoran reitin estymisen aiheuttamia positiivismerkkisiä vir-heitä, jotka ovat huomattavan suuria useimpiin mittausvirheisiinverrattuna. Tässä väitöskirjassa esitetään laskennallisesti tehokkaitabayesiläisen suodattimen ja siloittimen approksimaatioita tilastol-lisille tila-avaruusmalleille, joissa mittauskohina noudattaa vinoat -jakaumaa. Vino t -jakauma on gaussisen jakauman laajennos, jasillä on kaksi lisäparametria, jotka vaikuttavat jakauman paksuhän-täisyyteen ja vinouteen. Kun mittauskohinaa mallintava jakaumaoletetaan paksuhäntäiseksi, optimaalinen bayesiläinen algoritmi eiole herkkä yksittäisille suurille mittausvirheille, ja kun jakauma olete-taan positiivisesti (tai negatiivisesti) vinoksi, algoritmit hyödyntävättietoa, että suurin osa suurista virheistä on positiivisia (tai negatiivi-sia). Vino t -jakauma on siis gaussista jakaumaa joustavampi, ja sillävoidaan mallintaa kulkuaikaan perustuvien mittausten virhejakau-maa tarkemmin kuin gaussisella jakaumalla. Vinolla t -jakaumalla onmyös ehdollisesti gaussinen esitys, joka soveltuu suodatus- ja siloi-tusposteriorien approksimointiin variaatio-Bayes-algoritmilla. Näinollen esitetyt algoritmit voivat olla laskennallisesti tehokkaampiakuin Monte Carlo -algoritmit erityisesti tilan ollessa korkeaulotteinen.Tässä väitöskirjassa näytetään, että vino-t -virhejakauman käyttö pa-rantaa UWB-radioon perustuvan sisätilapaikannuksen tarkkuuttasekä satelliittipohjaisen ulkopaikannuksen tarkkuutta kaupunkiym-päristössä verrattuna laajennettuun Kalmanin suodattimeen. Vino-t -suodatuksen laskennallinen vaativuus on suurempi mutta samaakertaluokkaa kuin laajennetun Kalmanin suodattimen
    corecore