988 research outputs found

    Text-Only Domain Adaptation for End-to-End Speech Recognition through Down-Sampling Acoustic Representation

    Full text link
    Mapping two modalities, speech and text, into a shared representation space, is a research topic of using text-only data to improve end-to-end automatic speech recognition (ASR) performance in new domains. However, the length of speech representation and text representation is inconsistent. Although the previous method up-samples the text representation to align with acoustic modality, it may not match the expected actual duration. In this paper, we proposed novel representations match strategy through down-sampling acoustic representation to align with text modality. By introducing a continuous integrate-and-fire (CIF) module generating acoustic representations consistent with token length, our ASR model can learn unified representations from both modalities better, allowing for domain adaptation using text-only data of the target domain. Experiment results of new domain data demonstrate the effectiveness of the proposed method.Comment: Accepted by INTERSPEECH 2023. arXiv admin note: text overlap with arXiv:2309.0143

    FastGraphTTS: An Ultrafast Syntax-Aware Speech Synthesis Framework

    Full text link
    This paper integrates graph-to-sequence into an end-to-end text-to-speech framework for syntax-aware modelling with syntactic information of input text. Specifically, the input text is parsed by a dependency parsing module to form a syntactic graph. The syntactic graph is then encoded by a graph encoder to extract the syntactic hidden information, which is concatenated with phoneme embedding and input to the alignment and flow-based decoding modules to generate the raw audio waveform. The model is experimented on two languages, English and Mandarin, using single-speaker, few samples of target speakers, and multi-speaker datasets, respectively. Experimental results show better prosodic consistency performance between input text and generated audio, and also get higher scores in the subjective prosodic evaluation, and show the ability of voice conversion. Besides, the efficiency of the model is largely boosted through the design of the AI chip operator with 5x acceleration.Comment: Accepted by The 35th IEEE International Conference on Tools with Artificial Intelligence. (ICTAI 2023

    Exploring Timbre Disentanglement in Non-Autoregressive Cross-Lingual Text-to-Speech

    Full text link
    In this paper, we present a FastPitch-based non-autoregressive cross-lingual Text-to-Speech (TTS) model built with language independent input representation and monolingual force aligners. We propose a phoneme length regulator that solves the length mismatch problem between language-independent phonemes and monolingual alignment results. Our experiments show that (1) an increasing number of training speakers encourages non-autoregressive cross-lingual TTS model to disentangle speaker and language representations, and (2) variance adaptors of FastPitch model can help disentangle speaker identity from learned representations in cross-lingual TTS. The subjective evaluation shows that our proposed model is able to achieve decent speaker consistency and similarity. We further improve the naturalness of Mandarin-dominated mixed-lingual utterances by utilizing the controllability of our proposed model.Comment: Submitted to ICASSP 202

    Nonparallel Emotional Speech Conversion

    Full text link
    We propose a nonparallel data-driven emotional speech conversion method. It enables the transfer of emotion-related characteristics of a speech signal while preserving the speaker's identity and linguistic content. Most existing approaches require parallel data and time alignment, which is not available in most real applications. We achieve nonparallel training based on an unsupervised style transfer technique, which learns a translation model between two distributions instead of a deterministic one-to-one mapping between paired examples. The conversion model consists of an encoder and a decoder for each emotion domain. We assume that the speech signal can be decomposed into an emotion-invariant content code and an emotion-related style code in latent space. Emotion conversion is performed by extracting and recombining the content code of the source speech and the style code of the target emotion. We tested our method on a nonparallel corpora with four emotions. Both subjective and objective evaluations show the effectiveness of our approach.Comment: Published in INTERSPEECH 2019, 5 pages, 6 figures. Simulation available at http://www.jian-gao.org/emoga

    Content-Dependent Fine-Grained Speaker Embedding for Zero-Shot Speaker Adaptation in Text-to-Speech Synthesis

    Full text link
    Zero-shot speaker adaptation aims to clone an unseen speaker's voice without any adaptation time and parameters. Previous researches usually use a speaker encoder to extract a global fixed speaker embedding from reference speech, and several attempts have tried variable-length speaker embedding. However, they neglect to transfer the personal pronunciation characteristics related to phoneme content, leading to poor speaker similarity in terms of detailed speaking styles and pronunciation habits. To improve the ability of the speaker encoder to model personal pronunciation characteristics, we propose content-dependent fine-grained speaker embedding for zero-shot speaker adaptation. The corresponding local content embeddings and speaker embeddings are extracted from a reference speech, respectively. Instead of modeling the temporal relations, a reference attention module is introduced to model the content relevance between the reference speech and the input text, and to generate the fine-grained speaker embedding for each phoneme encoder output. The experimental results show that our proposed method can improve speaker similarity of synthesized speeches, especially for unseen speakers.Comment: Submitted to Interspeech 202

    Conversational Speech Recognition by Learning Audio-textual Cross-modal Contextual Representation

    Full text link
    Automatic Speech Recognition (ASR) in conversational settings presents unique challenges, including extracting relevant contextual information from previous conversational turns. Due to irrelevant content, error propagation, and redundancy, existing methods struggle to extract longer and more effective contexts. To address this issue, we introduce a novel Conversational ASR system, extending the Conformer encoder-decoder model with cross-modal conversational representation. Our approach leverages a cross-modal extractor that combines pre-trained speech and text models through a specialized encoder and a modal-level mask input. This enables the extraction of richer historical speech context without explicit error propagation. We also incorporate conditional latent variational modules to learn conversational level attributes such as role preference and topic coherence. By introducing both cross-modal and conversational representations into the decoder, our model retains context over longer sentences without information loss, achieving relative accuracy improvements of 8.8% and 23% on Mandarin conversation datasets HKUST and MagicData-RAMC, respectively, compared to the standard Conformer model.Comment: Submitted to TASL
    corecore