172 research outputs found

    The impact of memory effect on space fractional strong quantum couplers with tunable decay behavior and its numerical simulation

    Get PDF
    The nontrivial behavior of wave packets in the space fractional coupled nonlinear Schrödinger equation has received considerable theoretical attention. The difficulty comes from the fact that the Riesz fractional derivative is inherently a prehistorical operator. In contrast, nonlinear Schrödinger equation with both time and space nonlocal operators, which is the cornerstone in the modeling of a new type of fractional quantum couplers, is still in high demand of attention. This paper is devoted to numerically study the propagation of solitons through a new type of quantum couplers which can be called time-space fractional quantum couplers. The numerical methodology is based on the finite-difference/Galerkin Legendre spectral method with an easy to implement numerical algorithm. The time-fractional derivative is considered to describe the decay behavior and the nonlocal memory of the model. We conduct numerical simulations to observe the performance of the tunable decay and the sharpness behavior of the time-space fractional strongly coupled nonlinear Schrödinger model as well as the performance of the numerical algorithm. Numerical simulations show that the time and space fractional-order operators control the decay behavior or the memory and the sharpness of the interface and undergo a seamless transition of the fractional-order parameters

    Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients

    Get PDF
    open access articleMotivated by the limited work performed on the development of computational techniques for solving the nonlinear Schrödinger equation with time-dependent coefficients, we develop a modified Runge-Kutta pair with improved periodicity and stability characteristics. Additionally, we develop a modified step size control algorithm, which increases the efficiency of our pair and all other pairs included in the numerical experiments. The numerical results on the nonlinear Schrödinger equation with periodic solution verified the superiority of the new algorithm in terms of efficiency. The new method also presents a good behaviour of the maximum absolute error and the global norm in time, even after a high number of oscillations

    The impact of memory effect on space fractional strong quantum couplers with tunable decay behavior and its numerical simulation

    Full text link
    The nontrivial behavior of wave packets in the space fractional coupled nonlinear Schrödinger equation has received considerable theoretical attention. The difficulty comes from the fact that the Riesz fractional derivative is inherently a prehistorical operator. In contrast, nonlinear Schrödinger equation with both time and space nonlocal operators, which is the cornerstone in the modeling of a new type of fractional quantum couplers, is still in high demand of attention. This paper is devoted to numerically study the propagation of solitons through a new type of quantum couplers which can be called time-space fractional quantum couplers. The numerical methodology is based on the finite-difference/Galerkin Legendre spectral method with an easy to implement numerical algorithm. The time-fractional derivative is considered to describe the decay behavior and the nonlocal memory of the model. We conduct numerical simulations to observe the performance of the tunable decay and the sharpness behavior of the time-space fractional strongly coupled nonlinear Schrödinger model as well as the performance of the numerical algorithm. Numerical simulations show that the time and space fractional-order operators control the decay behavior or the memory and the sharpness of the interface and undergo a seamless transition of the fractional-order parameters. © 2021, The Author(s).This study was supported financially by RFBR Grant (19-01-00019), the National Research Centre of Egypt (NRC) and Ghent university

    Rank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equations

    Get PDF
    Dynamical low-rank integrators for matrix differential equations recently attracted a lot of attention and have proven to be very efficient in various applications. In this paper, we propose a novel strategy for choosing the rank of the projector-splitting integrator of Lubich and Oseledets adaptively. It is based on a combination of error estimators for the local time-discretization error and for the low-rank error with the aim to balance both. This ensures that the convergence of the underlying time integrator is preserved. The adaptive algorithm works for projector-splitting integrator methods for first-order matrix differential equations and also for dynamical low-rank integrators for second-order equations, which use the projector-splitting integrator method in its substeps. Numerical experiments illustrate the performance of the new integrators

    ABC Method and Fractional Momentum Layer for the FDTD Method to Solve the Schrödinger Equation on Unbounded Domains

    Get PDF
    The finite­difference time­domain (FDTD) method and its generalized variant (G­FDTD) are efficient numerical tools for solving the linear and nonlinear Schrödinger equations because not only are they explicit, allowing parallelization, but they also provide high­order accuracy with relatively inexpensive computational costs. In addition, the G­FDTD method has a relaxed stability condition when compared to the original FDTD method. It is important to note that the existing simulations of the G­FDTD scheme employed analytical solutions to obtain function values at the points along the boundary; however, in simulations for which the analytical solution is unknown, theoretical approximations for values at points along the boundary are desperately needed. Hence, the objective of this dissertation research is to develop absorbing boundary conditions (ABCs) so that the G­FDTD method can be used to solve the nonlinear Schrödinger equation when the analytical solution is unknown. To create the ABCs for the nonlinear Schrödinger equation, we initially determine the associated Engquist­Majda one­way wave equations and then proceed to develop a finite difference scheme for them. These ABCs are made to be adaptive using a windowed Fourier transform to estimate a value of the wavenumber of the carrier wave. These ABCs were tested using the nonlinear Schrödinger equation for 1D and 2D soliton propagation as well as Gaussian packet collision and dipole radiation. Results show that these ABCs perform well, but they have three key limitations. First, there are inherent reflections at the interface of the interior and boundary domains due to the different schemes used the two regions; second, to use the ABCs, one needs to estimate a value for the carrier wavenumber and poor estimates can cause even more reflection at the interface; and finally, the ABCs require different schemes in different regions of the boundary, and this domain decomposition makes the ABCs tedious both to develop and to implement. To address these limitations for the FDTD method, we employ the fractional­order derivative concept to unify the Schrödinger equation with its one­way wave equation over an interval where the fractional order is allowed to vary. Through careful construction of a variable­order fractional momentum operator, outgoing waves may enter the fractionalorder region with little to no reflection and, inside this region, any reflected portions of the wave will decay exponentially with time. The fractional momentum operator is then used to create a fractional­order FDTD scheme. Importantly, this single scheme can be used for the entire computational domain, and the scheme smooths the abrupt transition between the FDTD method and the ABCs. Furthermore, the fractional FDTD scheme relaxes the precision needed for the estimated carrier wavenumber. This fractional FDTD scheme is tested for both the linear and nonlinear Schrödinger equations. Example cases include a 1D Gaussian packet scattering off of a potential, a 1D soliton propagating to the right, as well as 2D soliton propagation, and the collision of Gaussian packets. Results show that the fractional FDTD method outperforms the FDTD method with ABCs

    Numerical computing approach for solving Hunter-Saxton equation arising in liquid crystal model through sinc collocation method

    Get PDF
    In this study, numerical treatment of liquid crystal model described through Hunter-Saxton equation (HSE) has been presented by sinc collocation technique through theta weighted scheme due to its enormous applications including, defects, phase diagrams, self-assembly, rheology, phase transitions, interfaces, and integrated biological applications in mesophase materials and processes. Sinc functions provide the procedure for function approximation over all types of domains containing singularities, semi-infinite or infinite domains. Sinc functions have been used to reduce HSE into an algebraic system of equations that makes the solution quite superficial. These algebraic equations have been interpreted as matrices. This projected that sinc collocation technique is considerably efficacious on computational ground for higher accuracy and convergence of numerical solutions. Stability analysis of the proposed technique has ensured the accuracy and reliability of the method, moreover, as the stability parameter satisfied the condition the proposed solution of the problem converges. The solution of the HSE is presented through graphical figures and tables for different cases that are constructed on various values of θ and collocation points. The accuracy and efficiency of the proposed technique is analyzed on the basis of absolute errors.This research has been partially supported by Ministerio de Ciencia, Innovación y Universidades grant number PGC2018-0971-B-100 and Fundación Séneca -Agencia de Ciencia y Tecnología de la Región de Murcia grant number 20783/PI/18. Also, It has been supported by the National Research Program for Universities (NRPU), Higher Education Commission, Pakistan, No. 8103/Punjab/NRPU/R and D/HEC/2017

    Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients

    Get PDF
    Motivated by the limited work performed on the development of computational techniques for solving the nonlinear Schrödinger equation with time-dependent coefficients, we develop a modified Runge–Kutta pair with improved periodicity and stability characteristics. Additionally, we develop a modified step size control algorithm, which increases the efficiency of our pair and all other pairs included in the numerical experiments. The numerical results on the nonlinear Schrödinger equation with a periodic solution verified the superiority of the new algorithm in terms of efficiency. The new method also presents a good behaviour of the maximum absolute error and the global norm in time, even after a high number of oscillations

    B-Spline Collocation Methods For Coupled Nonlinear Schrödinger Equation

    Get PDF
    In this study, the Coupled Nonlinear Schrödinger Equation (CNLSE) which models the propagation of light waves in optical fiber is solved using numerical methods namely Finite Difference Method (FDM) and B-Spline collocation methods. The equation was discretized in space and time. We propose the discretization of the nonlinear terms in the CNLSE following the Taylor approach and a newly developed approach called Besse. The theta-weighted method is used to generalize the scheme whereby the Crank-Nicolson scheme (i.e θ = 0.5) is chosen. The time derivatives are discretized by forward difference approximation. For each approach, the space dimension is then discretized by five different collocation methods independently. The first method for Taylor approach is based on FDM whereby the space derivatives are replaced by central difference approximation
    corecore