1,835 research outputs found

    A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: Triangular grids

    Full text link
    A novel wetting and drying treatment for second-order Runge-Kutta discontinuous Galerkin (RKDG2) methods solving the non-linear shallow water equations is proposed. It is developed for general conforming two-dimensional triangular meshes and utilizes a slope limiting strategy to accurately model inundation. The method features a non-destructive limiter, which concurrently meets the requirements for linear stability and wetting and drying. It further combines existing approaches for positivity preservation and well-balancing with an innovative velocity-based limiting of the momentum. This limiting controls spurious velocities in the vicinity of the wet/dry interface. It leads to a computationally stable and robust scheme -- even on unstructured grids -- and allows for large time steps in combination with explicit time integrators. The scheme comprises only one free parameter, to which it is not sensitive in terms of stability. A number of numerical test cases, ranging from analytical tests to near-realistic laboratory benchmarks, demonstrate the performance of the method for inundation applications. In particular, super-linear convergence, mass-conservation, well-balancedness, and stability are verified

    Computational modes and grid imprinting on five quasi-uniform spherical C-grids

    Get PDF
    Currently, most operational forecasting models use latitude-longitude grids, whose convergence of meridians towards the poles limits parallel scaling. Quasi-uniform grids might avoid this limitation. Thuburn et al, JCP, 2009 and Ringler et al, JCP, 2010 have developed a method for arbitrarily-structured, orthogonal C-grids (TRiSK), which has many of the desirable properties of the C-grid on latitude-longitude grids but which works on a variety of quasi-uniform grids. Here, five quasi-uniform, orthogonal grids of the sphere are investigated using TRiSK to solve the shallow-water equations. We demonstrate some of the advantages and disadvantages of the hexagonal and triangular icosahedra, a Voronoi-ised cubed sphere, a Voronoi-ised skipped latitude-longitude grid and a grid of kites in comparison to a full latitude-longitude grid. We will show that the hexagonal-icosahedron gives the most accurate results (for least computational cost). All of the grids suffer from spurious computational modes; this is especially true of the kite grid, despite it having exactly twice as many velocity degrees of freedom as height degrees of freedom. However, the computational modes are easiest to control on the hexagonal icosahedron since they consist of vorticity oscillations on the dual grid which can be controlled using a diffusive advection scheme for potential vorticity

    A Hamiltonian Boussinesq model with horizontally sheared currents

    Get PDF
    We are interested in the numerical modeling of wave-current interactions around beaches’ surf zones. Any model to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have formulated the Hamiltonian dynamics of a new water wave model. This model incorporates both the shallow water model and the potential flow model as limiting systems. The variational model derived by Cotter and Bokhove (2010) is such a model, but the variables used have been difficult to work with. Our new model has a three-dimensional velocity field consisting of the full three-dimensional potential field plus horizontal velocity components, such that the vertical component of vorticity is nonzero. Our aims are to augment the new model locally with bores and to derive a numerical finite element discretization of the new model including the capturing of bores. As a preliminary step, the variational finite element discretization of Miles’ variational principle coupled to an elliptic mesh generator is shown

    High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows

    Full text link
    In this article we present the first better than second order accurate unstructured Lagrangian-type one-step WENO finite volume scheme for the solution of hyperbolic partial differential equations with non-conservative products. The method achieves high order of accuracy in space together with essentially non-oscillatory behavior using a nonlinear WENO reconstruction operator on unstructured triangular meshes. High order accuracy in time is obtained via a local Lagrangian space-time Galerkin predictor method that evolves the spatial reconstruction polynomials in time within each element. The final one-step finite volume scheme is derived by integration over a moving space-time control volume, where the non-conservative products are treated by a path-conservative approach that defines the jump terms on the element boundaries. The entire method is formulated as an Arbitrary-Lagrangian-Eulerian (ALE) method, where the mesh velocity can be chosen independently of the fluid velocity. The new scheme is applied to the full seven-equation Baer-Nunziato model of compressible multi-phase flows in two space dimensions. The use of a Lagrangian approach allows an excellent resolution of the solid contact and the resolution of jumps in the volume fraction. The high order of accuracy of the scheme in space and time is confirmed via a numerical convergence study. Finally, the proposed method is also applied to a reduced version of the compressible Baer-Nunziato model for the simulation of free surface water waves in moving domains. In particular, the phenomenon of sloshing is studied in a moving water tank and comparisons with experimental data are provided
    • …
    corecore