39 research outputs found

    Software tools for the rapid development of signal processing and communications systems on configurable platforms

    Get PDF
    Programmers and engineers in the domains of high performance computing (HPC) and electronic system design have a shared goal: to define a structure for coordination and communication between nodes in a highly parallel network of processing tasks. Practitioners in both of these fields have recently encountered additional constraints that motivate the use of multiple types of processing device in a hybrid or heterogeneous platform, but constructing a working "program" to be executed on such an architecture is very time-consuming with current domain-specific design methodologies. In the field of HPC, research has proposed solutions involving the use of alternative computational devices such as FPGAs (field-programmable gate arrays), since these devices can exhibit much greater performance per unit of power consumption. The appeal of integrating these devices into traditional microprocessor-based systems is mitigated, however, by the greater difficulty in constructing a system for the resulting hybrid platform. In the field of electronic system design, a similar problem of integration exists. Many of the highly parallel FPGA-based systems that Xilinx and its customers produce for applications such as telecommunications and video processing require the additional use of one or more microprocessors, but coordinating the interactions between existing FPGA cores and software running on the microprocessors is difficult. The aim of my project is to improve the design flow for hybrid systems by proposing, firstly, an abstract representation of these systems and their components which captures in metadata their different models of computation and communication; secondly, novel design checking, exploration and optimisation techniques based around this metadata; and finally, a novel design methodology in which component and system metadata is used to generate software simulation models. The effectiveness of this approach will be evaluated through the implementation of two physical-layer telecommunications system models that meet the requirements of the 3GPP "LTE" standard, which is commercially relevant to Xilinx and many other organisations

    A Modular Approach to Adaptive Reactive Streaming Systems

    Get PDF
    The latest generations of FPGA devices offer large resource counts that provide the headroom to implement large-scale and complex systems. However, there are increasing challenges for the designer, not just because of pure size and complexity, but also in harnessing effectively the flexibility and programmability of the FPGA. A central issue is the need to integrate modules from diverse sources to promote modular design and reuse. Further, the capability to perform dynamic partial reconfiguration (DPR) of FPGA devices means that implemented systems can be made reconfigurable, allowing components to be changed during operation. However, use of DPR typically requires low-level planning of the system implementation, adding to the design challenge. This dissertation presents ReShape: a high-level approach for designing systems by interconnecting modules, which gives a ‘plug and play’ look and feel to the designer, is supported by tools that carry out implementation and verification functions, and is carried through to support system reconfiguration during operation. The emphasis is on the inter-module connections and abstracting the communication patterns that are typical between modules – for example, the streaming of data that is common in many FPGA-based systems, or the reading and writing of data to and from memory modules. ShapeUp is also presented as the static precursor to ReShape. In both, the details of wiring and signaling are hidden from view, via metadata associated with individual modules. ReShape allows system reconfiguration at the module level, by supporting type checking of replacement modules and by managing the overall system implementation, via metadata associated with its FPGA floorplan. The methodology and tools have been implemented in a prototype for a broad domain-specific setting – networking systems – and have been validated on real telecommunications design projects

    A generic debug interface for IP-integrated assertions

    Get PDF
    Der Entwurf von Hardware/Software Systemen ist auf eine solide Verifikationsmethodik angewiesen, die den ganzen Design Flow durchzieht. Viele Konzepte haben eine Erhöhung des Abstraktionsniveaus bei der Entwurfseingabe gemeinsam, wobei der modell-basierte Hardware-Entwurf einen vielversprechenden und sich verbreitenenden Ansatz darstellt. Assertion basierte Verifikation ermöglicht dem Entwickler die Spezifikation von Eigenschaften des Entwurfes und die Aufdeckung von Fällen, in denen diese verletzt werden. Während Assertions in Entwurfs- und Simulationsstadien weit verbreitet sind, ist der Ansatz, diese mit auf dem integrierten Schaltkreis (IC) zu fertigen, neuartig. In dieser Diplomarbeit soll ein von Infineon Technologies entwickeltes, auf UML basierendes Datenmodell, welches zur Erfassung von Entwurfsspezifikation und zur automatischen Code-Generierung genutzt wird dahingehend erweitert werden, die Beschreibung für im IC integrierte Assertions zu ermöglichen. Für diese Zwecke wird ein abstraktes Datenmodell beschrieben werden. Das Assertion Interface soll die spezifikationsgetreue Modellintegration gewährleisten, sowie IC interne Assertionresultate dem umgebenen System über das Interface zugänglich machen und damit zum Debugging während der Laufzeit ermöglichen. Ferner werden die Codegenerierungs Templates erläutert und einBeispielsystem eingeführt, um die beschriebenden Konzepte zu validieren.Nowadays electronic systems design requires fast time to market and solid verification throughout the entire design flow. Many concepts have been researched to raise the level of abstraction during the design entry phase, whereas model-based design is the most promising one. Assertion-based verification enables the developer to specify properties of the design and to get report if these are violated. Assertions are common during development and simulation of electronic products but often are not included in the final silicon. In this thesis an UML-based model defined at Infineon Technologies for capturing design specification information and to generate code automatically using templates, will be extended to allow the description of an abstract debuggable assertion interface for silicon assertions. With help of the assertion interface it shall be possible to verify the correct module integration and to monitor IP-internal assertion checker results. Besides, the code-generation templates for the assertion interface model will be described. To demonstrate the usability of the developed concepts an example system will be introduced to validate the approach.Ilmenau, Techn. Univ., Diplomarbeit, 200

    Modeling and Simulation Methodologies for Digital Twin in Industry 4.0

    Get PDF
    The concept of Industry 4.0 represents an innovative vision of what will be the factory of the future. The principles of this new paradigm are based on interoperability and data exchange between dierent industrial equipment. In this context, Cyber- Physical Systems (CPSs) cover one of the main roles in this revolution. The combination of models and the integration of real data coming from the field allows to obtain the virtual copy of the real plant, also called Digital Twin. The entire factory can be seen as a set of CPSs and the resulting system is also called Cyber-Physical Production System (CPPS). This CPPS represents the Digital Twin of the factory with which it would be possible analyze the real factory. The interoperability between the real industrial equipment and the Digital Twin allows to make predictions concerning the quality of the products. More in details, these analyses are related to the variability of production quality, prediction of the maintenance cycle, the accurate estimation of energy consumption and other extra-functional properties of the system. Several tools [2] allow to model a production line, considering dierent aspects of the factory (i.e. geometrical properties, the information flows etc.) However, these simulators do not provide natively any solution for the design integration of CPSs, making impossible to have precise analysis concerning the real factory. Furthermore, for the best of our knowledge, there are no solution regarding a clear integration of data coming from real equipment into CPS models that composes the entire production line. In this context, the goal of this thesis aims to define an unified methodology to design and simulate the Digital Twin of a plant, integrating data coming from real equipment. In detail, the presented methodologies focus mainly on: integration of heterogeneous models in production line simulators; Integration of heterogeneous models with ad-hoc simulation strategies; Multi-level simulation approach of CPS and integration of real data coming from sensors into models. All the presented contributions produce an environment that allows to perform simulation of the plant based not only on synthetic data, but also on real data coming from equipments

    Rapid SoC Design: On Architectures, Methodologies and Frameworks

    Full text link
    Modern applications like machine learning, autonomous vehicles, and 5G networking require an order of magnitude boost in processing capability. For several decades, chip designers have relied on Moore’s Law - the doubling of transistor count every two years to deliver improved performance, higher energy efficiency, and an increase in transistor density. With the end of Dennard’s scaling and a slowdown in Moore’s Law, system architects have developed several techniques to deliver on the traditional performance and power improvements we have come to expect. More recently, chip designers have turned towards heterogeneous systems comprised of more specialized processing units to buttress the traditional processing units. These specialized units improve the overall performance, power, and area (PPA) metrics across a wide variety of workloads and applications. While the GPU serves as a classical example, accelerators for machine learning, approximate computing, graph processing, and database applications have become commonplace. This has led to an exponential growth in the variety (and count) of these compute units found in modern embedded and high-performance computing platforms. The various techniques adopted to combat the slowing of Moore’s Law directly translates to an increase in complexity for modern system-on-chips (SoCs). This increase in complexity in turn leads to an increase in design effort and validation time for hardware and the accompanying software stacks. This is further aggravated by fabrication challenges (photo-lithography, tooling, and yield) faced at advanced technology nodes (below 28nm). The inherent complexity in modern SoCs translates into increased costs and time-to-market delays. This holds true across the spectrum, from mobile/handheld processors to high-performance data-center appliances. This dissertation presents several techniques to address the challenges of rapidly birthing complex SoCs. The first part of this dissertation focuses on foundations and architectures that aid in rapid SoC design. It presents a variety of architectural techniques that were developed and leveraged to rapidly construct complex SoCs at advanced process nodes. The next part of the dissertation focuses on the gap between a completed design model (in RTL form) and its physical manifestation (a GDS file that will be sent to the foundry for fabrication). It presents methodologies and a workflow for rapidly walking a design through to completion at arbitrary technology nodes. It also presents progress on creating tools and a flow that is entirely dependent on open-source tools. The last part presents a framework that not only speeds up the integration of a hardware accelerator into an SoC ecosystem, but emphasizes software adoption and usability.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168119/1/ajayi_1.pd

    Development of a cross-correlator for the implementation of a radar matched filter on FPGA

    Get PDF
    To achieve the research aim, a research methodology was designed, a vital part of which was the setting of objectives that, when completed, would seek to incrementally fill the gaps in the boundary of knowledge and realize the research aim. The objectives of the research are listed below. All of these objectives were completed as part of the research. Furthermore, the results obtained as a direct consequence of meeting these objectives are stated. -Development of a methodology to design for auto/cross correlation VHDL -Definition of a selection process of VHDL features and difference of application of time domain and frequency domain -Demonstration of the methodology, selection process and techniques in the real case and its demonstration

    Embedded computing systems design: architectural and application perspectives

    Get PDF
    Questo elaborato affronta varie problematiche legate alla progettazione e all'implementazione dei moderni sistemi embedded di computing, ponendo in rilevo, e talvolta in contrapposizione, le sfide che emergono all'avanzare della tecnologia ed i requisiti che invece emergono a livello applicativo, derivanti dalle necessità degli utenti finali e dai trend di mercato. La discussione sarà articolata tenendo conto di due punti di vista: la progettazione hardware e la loro applicazione a livello di sistema. A livello hardware saranno affrontati nel dettaglio i problemi di interconnettività on-chip. Aspetto che riguarda la parallelizzazione del calcolo, ma anche l'integrazione di funzionalità eterogenee. Sarà quindi discussa un'architettura d'interconnessione denominata Network-on-Chip (NoC). La soluzione proposta è in grado di supportare funzionalità avanzate di networking direttamente in hardware, consentendo tuttavia di raggiungere sempre un compromesso ottimale tra prestazioni in termini di traffico e requisiti di implementazioni a seconda dell'applicazione specifica. Nella discussione di questa tematica, verrà posto l'accento sul problema della configurabilità dei blocchi che compongono una NoC. Quello della configurabilità, è un problema sempre più sentito nella progettazione dei sistemi complessi, nei quali si cerca di sviluppare delle funzionalità, anche molto evolute, ma che siano semplicemente riutilizzabili. A tale scopo sarà introdotta una nuova metodologia, denominata Metacoding che consiste nell'astrarre i problemi di configurabilità attraverso linguaggi di programmazione di alto livello. Sulla base del metacoding verrà anche proposto un flusso di design automatico in grado di semplificare la progettazione e la configurazione di una NoC da parte del designer di rete. Come anticipato, la discussione si sposterà poi a livello di sistema, per affrontare la progettazione di tali sistemi dal punto di vista applicativo, focalizzando l'attenzione in particolare sulle applicazioni di monitoraggio remoto. A tal riguardo saranno studiati nel dettaglio tutti gli aspetti che riguardano la progettazione di un sistema per il monitoraggio di pazienti affetti da scompenso cardiaco cronico. Si partirà dalla definizione dei requisiti, che, come spesso accade a questo livello, derivano principalmente dai bisogni dell'utente finale, nel nostro caso medici e pazienti. Verranno discusse le problematiche di acquisizione, elaborazione e gestione delle misure. Il sistema proposto introduce vari aspetti innovativi tra i quali il concetto di protocollo operativo e l'elevata interoperabilità offerta. In ultima analisi, verranno riportati i risultati relativi alla sperimentazione del sistema implementato. Infine, il tema del monitoraggio remoto sarà concluso con lo studio delle reti di distribuzione elettrica intelligenti: le Smart Grid, cercando di fare uno studio dello stato dell'arte del settore, proponendo un'architettura di Home Area Network (HAN) e suggerendone una possibile implementazione attraverso Commercial Off the Shelf (COTS)

    A framework for assertion-based timing verification and PC-based restbus simulation of automotive systems

    Get PDF
    Innovation in der Automobilindustrie wird durch Elektronik und vor allem durch Software ermöglicht. In der Regel wird eine Vielzahl von verteilten Funktionen realisiert. Typischerweise, wird diese Software über mehrere Steuergeräte verteilt. Durch die Verteilung und die Vielzahl an Funktionen ensteht eine immer wachsende Komplexität, die den Verifikations- und Validierungsprozess anspruchsvoller und schwieriger gestaltet. Daher ist für Ingenieure in der Automobilindustrie die Entwicklung von effizienten und effektiven Design-Methoden von großem Interesse.Ein zentrales Element in der Entwicklung automobiler Software ist der komponentebasierten Ansatz. Derzeit ist AUTOSAR der wichtigste Standard, der dieses Paradigma unterstützt. Die Systembeschreibungssprache SystemC ist ebenfalls ein Mittel, um AUTOSAR-Komponenten simulieren zu können. Desweiteren stellt SystemC einen Satz von Bibliotheken zur Verfügung wie zum Beispiel die „SystemC Verification Library“ (SCV), und einen diskreten Event-Simulationskern. Inzwischen ist das Interesse an der Verwendung von SystemC in der automobile Softwareentwicklung stark gestiegen.In dieser Arbeit stellen wir eine SystemC-basierte Entwurfsmethodik für eine frühe Validierung zeitkritischer automobile Systeme vor. Die Methodik reicht von einer reinen SystemC-Simulation bis zu einer PC-basierten Restbussimulation. Um die Synchronisation bezüglich Überabtastung und Unterabtastung zwischen dem SystemC-Simulationsmodell und dem Restbus während der Restbussimulation zu gewährleisten, präsentieren wir ein Synchronisationsverfahren. Im Rahmen dieser Arbeit wurde für die Integration von SystemC-Komponenten IP-XACT als Modelierungsstandard verwendet. Um eine Zeitanalyse ermöglichen zu können, stellen wir Erweiterungen für den IP-XACT-Standard vor, mit deren Hilfe Zeitanforderungen anAutomotive system innovation is mainly driven by software which can be distributed over a large number of functions typically deployed over several ECUs. This growing design complexity makes the verification and validation process challenging and difficult. Therefore, the development of efficient and effective design methodologies is of great interest for automotive engineers.A central concept in the development of automotive software is the component-based approach. Currently, the most prominent approach that supports this design paradigm is the AUTOSAR. The SLDL SystemC provides means to simulate the behavior of AUTOSAR software components by means of a discrete-event simulation kernel. Additionally, SystemC comes with a set of libraries such as the SCV. Meanwhile, the interest of using SystemC has grown in the automotive software development community. In this thesis we present a SystemC-based design methodology for early validation of time-critical automotive systems. The methodology spans from pure SystemC simulation to PC-based Restbus simulation. To deal with synchronization issues (oversampling and undersampling) that arise during Restbus simulation between the SystemC simulation model and the remaining bus network, we also present a new synchronization approach. Finally, we make use IP-XACT for SystemC component integration. To capture timing constraints on the simulation model, we propose timing extensions for the IP-XACT standard. These timing constraints can then be used to verify the SystemC simulation model.Tag der Verteidigung: 11.09.2015Paderborn, Univ., Diss., 201
    corecore