728 research outputs found

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Bridging the Gap Between Neural Networks and Neuromorphic Hardware with A Neural Network Compiler

    Full text link
    Different from developing neural networks (NNs) for general-purpose processors, the development for NN chips usually faces with some hardware-specific restrictions, such as limited precision of network signals and parameters, constrained computation scale, and limited types of non-linear functions. This paper proposes a general methodology to address the challenges. We decouple the NN applications from the target hardware by introducing a compiler that can transform an existing trained, unrestricted NN into an equivalent network that meets the given hardware's constraints. We propose multiple techniques to make the transformation adaptable to different kinds of NN chips, and reliable for restrict hardware constraints. We have built such a software tool that supports both spiking neural networks (SNNs) and traditional artificial neural networks (ANNs). We have demonstrated its effectiveness with a fabricated neuromorphic chip and a processing-in-memory (PIM) design. Tests show that the inference error caused by this solution is insignificant and the transformation time is much shorter than the retraining time. Also, we have studied the parameter-sensitivity evaluations to explore the tradeoffs between network error and resource utilization for different transformation strategies, which could provide insights for co-design optimization of neuromorphic hardware and software.Comment: Accepted by ASPLOS 201

    AHEAD: Automatic Holistic Energy-Aware Design Methodology for MLP Neural Network Hardware Generation in Proactive BMI Edge Devices

    Get PDF
    The prediction of a high-level cognitive function based on a proactive brain–machine interface (BMI) control edge device is an emerging technology for improving the quality of life for disabled people. However, maintaining the stability of multiunit neural recordings is made difficult by the nonstationary nature of neurons and can affect the overall performance of proactive BMI control. Thus, it requires regular recalibration to retrain a neural network decoder for proactive control. However, retraining may lead to changes in the network parameters, such as the network topology. In terms of the hardware implementation of the neural decoder for real-time and low-power processing, it takes time to modify or redesign the hardware accelerator. Consequently, handling the engineering change of the low-power hardware design requires substantial human resources and time. To address this design challenge, this work proposes AHEAD: an automatic holistic energy-aware design methodology for multilayer perceptron (MLP) neural network hardware generation in proactive BMI edge devices. By taking a holistic analysis of the proactive BMI design flow, the approach makes judicious use of the intelligent bit-width identification (BWID) and configurable hardware generation, which autonomously integrate to generate the low-power hardware decoder. The proposed AHEAD methodology begins with the trained MLP parameters and golden datasets and produces an efficient hardware design in terms of performance, power, and area (PPA) with the least loss of accuracy. The results show that the proposed methodology is up to a 4X faster in performance, 3X lower in terms of power consumption, and achieves a 5X reduction in area resources, with exact accuracy, compared to floating-point and half-floating-point design on a field-programmable gate array (FPGA), which makes it a promising design methodology for proactive BMI edge devices

    Large-Scale Optical Neural Networks based on Photoelectric Multiplication

    Full text link
    Recent success in deep neural networks has generated strong interest in hardware accelerators to improve speed and energy consumption. This paper presents a new type of photonic accelerator based on coherent detection that is scalable to large (N≳106N \gtrsim 10^6) networks and can be operated at high (GHz) speeds and very low (sub-aJ) energies per multiply-and-accumulate (MAC), using the massive spatial multiplexing enabled by standard free-space optical components. In contrast to previous approaches, both weights and inputs are optically encoded so that the network can be reprogrammed and trained on the fly. Simulations of the network using models for digit- and image-classification reveal a "standard quantum limit" for optical neural networks, set by photodetector shot noise. This bound, which can be as low as 50 zJ/MAC, suggests performance below the thermodynamic (Landauer) limit for digital irreversible computation is theoretically possible in this device. The proposed accelerator can implement both fully-connected and convolutional networks. We also present a scheme for back-propagation and training that can be performed in the same hardware. This architecture will enable a new class of ultra-low-energy processors for deep learning.Comment: Text: 10 pages, 5 figures, 1 table. Supplementary: 8 pages, 5, figures, 2 table
    • …
    corecore