4,782 research outputs found

    A frailty-contagion model for multi-site hourly precipitation driven by atmospheric covariates

    Full text link
    Accurate stochastic simulations of hourly precipitation are needed for impact studies at local spatial scales. Statistically, hourly precipitation data represent a difficult challenge. They are non-negative, skewed, heavy tailed, contain a lot of zeros (dry hours) and they have complex temporal structures (e.g., long persistence of dry episodes). Inspired by frailty-contagion approaches used in finance and insurance, we propose a multi-site precipitation simulator that, given appropriate regional atmospheric variables, can simultaneously handle dry events and heavy rainfall periods. One advantage of our model is its conceptual simplicity in its dynamical structure. In particular, the temporal variability is represented by a common factor based on a few classical atmospheric covariates like temperatures, pressures and others. Our inference approach is tested on simulated data and applied on measurements made in the northern part of French Brittany.Comment: Presented by Erwan Koch at the conferences: - 12th IMSC, Jeju (Korea), June 2013 - ISI WSC 2013, Hong Kong, Aug.2013. Invited speaker in the session "Probabilistic and statistical contributions in climate research

    Sampling-Based Motion Planning Using Predictive Models

    Get PDF
    Robotic motion planning requires configuration space exploration. In high-dimensional configuration spaces, a complete exploration is computationally intractable. Practical motion planning algorithms for such high-dimensional spaces must expend computational resources in proportion to the local complexity of configuration space regions. We propose a novel motion planning approach that addresses this problem by building an incremental, approximate model of configuration space. The information contained in this model is used to direct computational resources to difficult regions, effectively addressing the narrow passage problem by adapting the sampling density to the complexity of that region. In addition, the expressiveness of the model permits predictive edge validations, which are performed based on the information contained in the model rather then by invoking a collision checker. Experimental results show that the exploitation of the information obtained through sampling and represented in a predictive model results in a significant decrease in the computational cost of motion planning

    Bayesian astrostatistics: a backward look to the future

    Full text link
    This perspective chapter briefly surveys: (1) past growth in the use of Bayesian methods in astrophysics; (2) current misconceptions about both frequentist and Bayesian statistical inference that hinder wider adoption of Bayesian methods by astronomers; and (3) multilevel (hierarchical) Bayesian modeling as a major future direction for research in Bayesian astrostatistics, exemplified in part by presentations at the first ISI invited session on astrostatistics, commemorated in this volume. It closes with an intentionally provocative recommendation for astronomical survey data reporting, motivated by the multilevel Bayesian perspective on modeling cosmic populations: that astronomers cease producing catalogs of estimated fluxes and other source properties from surveys. Instead, summaries of likelihood functions (or marginal likelihood functions) for source properties should be reported (not posterior probability density functions), including nontrivial summaries (not simply upper limits) for candidate objects that do not pass traditional detection thresholds.Comment: 27 pp, 4 figures. A lightly revised version of a chapter in "Astrostatistical Challenges for the New Astronomy" (Joseph M. Hilbe, ed., Springer, New York, forthcoming in 2012), the inaugural volume for the Springer Series in Astrostatistics. Version 2 has minor clarifications and an additional referenc

    Quantile-Based Spectral Analysis in an Object-Oriented Framework and a Reference Implementation in R: The quantspec Package

    Get PDF
    Quantile-based approaches to the spectral analysis of time series have recently attracted a lot of attention. Despite a growing literature that contains various estimation proposals, no systematic methods for computing the new estimators are available to date. This paper contains two main contributions. First, an extensible framework for quantile-based spectral analysis of time series is developed and documented using object-oriented models. A comprehensive, open source, reference implementation of this framework, the R package quantspec, was recently contributed to CRAN by the author of this paper. The second contribution of the present paper is to provide a detailed tutorial, with worked examples, to this R package. A reader who is already familiar with quantile-based spectral analysis and whose primary interest is not the design of the quantspec package, but how to use it, can read the tutorial and worked examples (Sections 3 and 4) independently.Comment: 27 pages, 11 figures, R package available via CRAN (http://cran.r-project.org/web/packages/quantspec) or GitHub (https://github.com/tobiaskley/quantspec

    Transfer Learning for Improving Model Predictions in Highly Configurable Software

    Full text link
    Modern software systems are built to be used in dynamic environments using configuration capabilities to adapt to changes and external uncertainties. In a self-adaptation context, we are often interested in reasoning about the performance of the systems under different configurations. Usually, we learn a black-box model based on real measurements to predict the performance of the system given a specific configuration. However, as modern systems become more complex, there are many configuration parameters that may interact and we end up learning an exponentially large configuration space. Naturally, this does not scale when relying on real measurements in the actual changing environment. We propose a different solution: Instead of taking the measurements from the real system, we learn the model using samples from other sources, such as simulators that approximate performance of the real system at low cost. We define a cost model that transform the traditional view of model learning into a multi-objective problem that not only takes into account model accuracy but also measurements effort as well. We evaluate our cost-aware transfer learning solution using real-world configurable software including (i) a robotic system, (ii) 3 different stream processing applications, and (iii) a NoSQL database system. The experimental results demonstrate that our approach can achieve (a) a high prediction accuracy, as well as (b) a high model reliability.Comment: To be published in the proceedings of the 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS'17

    Applications of Probabilistic Forecasting in Smart Grids : A Review

    Get PDF
    This paper reviews the recent studies and works dealing with probabilistic forecasting models and their applications in smart grids. According to these studies, this paper tries to introduce a roadmap towards decision-making under uncertainty in a smart grid environment. In this way, it firstly discusses the common methods employed to predict the distribution of variables. Then, it reviews how the recent literature used these forecasting methods and for which uncertain parameters they wanted to obtain distributions. Unlike the existing reviews, this paper assesses several uncertain parameters for which probabilistic forecasting models have been developed. In the next stage, this paper provides an overview related to scenario generation of uncertain parameters using their distributions and how these scenarios are adopted for optimal decision-making. In this regard, this paper discusses three types of optimization problems aiming to capture uncertainties and reviews the related papers. Finally, we propose some future applications of probabilistic forecasting based on the flexibility challenges of power systems in the near future.© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    corecore