2,069 research outputs found

    Relating Dependent Terms in Information Retrieval

    Get PDF
    Les moteurs de recherche font partie de notre vie quotidienne. Actuellement, plus d’un tiers de la population mondiale utilise l’Internet. Les moteurs de recherche leur permettent de trouver rapidement les informations ou les produits qu'ils veulent. La recherche d'information (IR) est le fondement de moteurs de recherche modernes. Les approches traditionnelles de recherche d'information supposent que les termes d'indexation sont indĂ©pendants. Pourtant, les termes qui apparaissent dans le mĂȘme contexte sont souvent dĂ©pendants. L’absence de la prise en compte de ces dĂ©pendances est une des causes de l’introduction de bruit dans le rĂ©sultat (rĂ©sultat non pertinents). Certaines Ă©tudes ont proposĂ© d’intĂ©grer certains types de dĂ©pendance, tels que la proximitĂ©, la cooccurrence, la contiguĂŻtĂ© et de la dĂ©pendance grammaticale. Dans la plupart des cas, les modĂšles de dĂ©pendance sont construits sĂ©parĂ©ment et ensuite combinĂ©s avec le modĂšle traditionnel de mots avec une importance constante. Par consĂ©quent, ils ne peuvent pas capturer correctement la dĂ©pendance variable et la force de dĂ©pendance. Par exemple, la dĂ©pendance entre les mots adjacents "Black Friday" est plus importante que celle entre les mots "road constructions". Dans cette thĂšse, nous Ă©tudions diffĂ©rentes approches pour capturer les relations des termes et de leurs forces de dĂ©pendance. Nous avons proposĂ© des mĂ©thodes suivantes: ─ Nous rĂ©examinons l'approche de combinaison en utilisant diffĂ©rentes unitĂ©s d'indexation pour la RI monolingue en chinois et la RI translinguistique entre anglais et chinois. En plus d’utiliser des mots, nous Ă©tudions la possibilitĂ© d'utiliser bi-gramme et uni-gramme comme unitĂ© de traduction pour le chinois. Plusieurs modĂšles de traduction sont construits pour traduire des mots anglais en uni-grammes, bi-grammes et mots chinois avec un corpus parallĂšle. Une requĂȘte en anglais est ensuite traduite de plusieurs façons, et un score classement est produit avec chaque traduction. Le score final de classement combine tous ces types de traduction. Nous considĂ©rons la dĂ©pendance entre les termes en utilisant la thĂ©orie d’évidence de Dempster-Shafer. Une occurrence d'un fragment de texte (de plusieurs mots) dans un document est considĂ©rĂ©e comme reprĂ©sentant l'ensemble de tous les termes constituants. La probabilitĂ© est assignĂ©e Ă  un tel ensemble de termes plutĂŽt qu’a chaque terme individuel. Au moment d’évaluation de requĂȘte, cette probabilitĂ© est redistribuĂ©e aux termes de la requĂȘte si ces derniers sont diffĂ©rents. Cette approche nous permet d'intĂ©grer les relations de dĂ©pendance entre les termes. Nous proposons un modĂšle discriminant pour intĂ©grer les diffĂ©rentes types de dĂ©pendance selon leur force et leur utilitĂ© pour la RI. Notamment, nous considĂ©rons la dĂ©pendance de contiguĂŻtĂ© et de cooccurrence Ă  de diffĂ©rentes distances, c’est-Ă -dire les bi-grammes et les paires de termes dans une fenĂȘtre de 2, 4, 8 et 16 mots. Le poids d’un bi-gramme ou d’une paire de termes dĂ©pendants est dĂ©terminĂ© selon un ensemble des caractĂšres, en utilisant la rĂ©gression SVM. Toutes les mĂ©thodes proposĂ©es sont Ă©valuĂ©es sur plusieurs collections en anglais et/ou chinois, et les rĂ©sultats expĂ©rimentaux montrent que ces mĂ©thodes produisent des amĂ©liorations substantielles sur l'Ă©tat de l'art.Search engine has become an integral part of our life. More than one-third of world populations are Internet users. Most users turn to a search engine as the quick way to finding the information or product they want. Information retrieval (IR) is the foundation for modern search engines. Traditional information retrieval approaches assume that indexing terms are independent. However, terms occurring in the same context are often dependent. Failing to recognize the dependencies between terms leads to noise (irrelevant documents) in the result. Some studies have proposed to integrate term dependency of different types, such as proximity, co-occurrence, adjacency and grammatical dependency. In most cases, dependency models are constructed apart and then combined with the traditional word-based (unigram) model on a fixed importance proportion. Consequently, they cannot properly capture variable term dependency and its strength. For example, dependency between adjacent words “black Friday” is more important to consider than those of between “road constructions”. In this thesis, we try to study different approaches to capture term relationships and their dependency strengths. We propose the following methods for monolingual IR and Cross-Language IR (CLIR): We re-examine the combination approach by using different indexing units for Chinese monolingual IR, then propose the similar method for CLIR. In addition to the traditional method based on words, we investigate the possibility of using Chinese bigrams and unigrams as translation units. Several translation models from English words to Chinese unigrams, bigrams and words are created based on a parallel corpus. An English query is then translated in several ways, each producing a ranking score. The final ranking score combines all these types of translations. We incorporate dependencies between terms in our model using Dempster-Shafer theory of evidence. Every occurrence of a text fragment in a document is represented as a set which includes all its implied terms. Probability is assigned to such a set of terms instead of individual terms. During query evaluation phase, the probability of the set can be transferred to those of the related query, allowing us to integrate language-dependent relations to IR. We propose a discriminative language model that integrates different term dependencies according to their strength and usefulness to IR. We consider the dependency of adjacency and co-occurrence within different distances, i.e. bigrams, pairs of terms within text window of size 2, 4, 8 and 16. The weight of bigram or a pair of dependent terms in the final model is learnt according to a set of features. All the proposed methods are evaluated on several English and/or Chinese collections, and experimental results show these methods achieve substantial improvements over state-of-the-art baselines

    A Formal Model of Ambiguity and its Applications in Machine Translation

    Get PDF
    Systems that process natural language must cope with and resolve ambiguity. In this dissertation, a model of language processing is advocated in which multiple inputs and multiple analyses of inputs are considered concurrently and a single analysis is only a last resort. Compared to conventional models, this approach can be understood as replacing single-element inputs and outputs with weighted sets of inputs and outputs. Although processing components must deal with sets (rather than individual elements), constraints are imposed on the elements of these sets, and the representations from existing models may be reused. However, to deal efficiently with large (or infinite) sets, compact representations of sets that share structure between elements, such as weighted finite-state transducers and synchronous context-free grammars, are necessary. These representations and algorithms for manipulating them are discussed in depth in depth. To establish the effectiveness and tractability of the proposed processing model, it is applied to several problems in machine translation. Starting with spoken language translation, it is shown that translating a set of transcription hypotheses yields better translations compared to a baseline in which a single (1-best) transcription hypothesis is selected and then translated, independent of the translation model formalism used. More subtle forms of ambiguity that arise even in text-only translation (such as decisions conventionally made during system development about how to preprocess text) are then discussed, and it is shown that the ambiguity-preserving paradigm can be employed in these cases as well, again leading to improved translation quality. A model for supervised learning that learns from training data where sets (rather than single elements) of correct labels are provided for each training instance and use it to learn a model of compound word segmentation is also introduced, which is used as a preprocessing step in machine translation

    Text-detection and -recognition from natural images

    Get PDF
    Text detection and recognition from images could have numerous functional applications for document analysis, such as assistance for visually impaired people; recognition of vehicle license plates; evaluation of articles containing tables, street signs, maps, and diagrams; keyword-based image exploration; document retrieval; recognition of parts within industrial automation; content-based extraction; object recognition; address block location; and text-based video indexing. This research exploited the advantages of artificial intelligence (AI) to detect and recognise text from natural images. Machine learning and deep learning were used to accomplish this task.In this research, we conducted an in-depth literature review on the current detection and recognition methods used by researchers to identify the existing challenges, wherein the differences in text resulting from disparity in alignment, style, size, and orientation combined with low image contrast and a complex background make automatic text extraction a considerably challenging and problematic task. Therefore, the state-of-the-art suggested approaches obtain low detection rates (often less than 80%) and recognition rates (often less than 60%). This has led to the development of new approaches. The aim of the study was to develop a robust text detection and recognition method from natural images with high accuracy and recall, which would be used as the target of the experiments. This method could detect all the text in the scene images, despite certain specific features associated with the text pattern. Furthermore, we aimed to find a solution to the two main problems concerning arbitrarily shaped text (horizontal, multi-oriented, and curved text) detection and recognition in a low-resolution scene and with various scales and of different sizes.In this research, we propose a methodology to handle the problem of text detection by using novel combination and selection features to deal with the classification algorithms of the text/non-text regions. The text-region candidates were extracted from the grey-scale images by using the MSER technique. A machine learning-based method was then applied to refine and validate the initial detection. The effectiveness of the features based on the aspect ratio, GLCM, LBP, and HOG descriptors was investigated. The text-region classifiers of MLP, SVM, and RF were trained using selections of these features and their combinations. The publicly available datasets ICDAR 2003 and ICDAR 2011 were used to evaluate the proposed method. This method achieved the state-of-the-art performance by using machine learning methodologies on both databases, and the improvements were significant in terms of Precision, Recall, and F-measure. The F-measure for ICDAR 2003 and ICDAR 2011 was 81% and 84%, respectively. The results showed that the use of a suitable feature combination and selection approach could significantly increase the accuracy of the algorithms.A new dataset has been proposed to fill the gap of character-level annotation and the availability of text in different orientations and of curved text. The proposed dataset was created particularly for deep learning methods which require a massive completed and varying range of training data. The proposed dataset includes 2,100 images annotated at the character and word levels to obtain 38,500 samples of English characters and 12,500 words. Furthermore, an augmentation tool has been proposed to support the proposed dataset. The missing of object detection augmentation tool encroach to proposed tool which has the ability to update the position of bounding boxes after applying transformations on images. This technique helps to increase the number of samples in the dataset and reduce the time of annotations where no annotation is required. The final part of the thesis presents a novel approach for text spotting, which is a new framework for an end-to-end character detection and recognition system designed using an improved SSD convolutional neural network, wherein layers are added to the SSD networks and the aspect ratio of the characters is considered because it is different from that of the other objects. Compared with the other methods considered, the proposed method could detect and recognise characters by training the end-to-end model completely. The performance of the proposed method was better on the proposed dataset; it was 90.34. Furthermore, the F-measure of the method’s accuracy on ICDAR 2015, ICDAR 2013, and SVT was 84.5, 91.9, and 54.8, respectively. On ICDAR13, the method achieved the second-best accuracy. The proposed method could spot text in arbitrarily shaped (horizontal, oriented, and curved) scene text.</div

    Text Augmentation: Inserting markup into natural language text with PPM Models

    Get PDF
    This thesis describes a new optimisation and new heuristics for automatically marking up XML documents. These are implemented in CEM, using PPMmodels. CEM is significantly more general than previous systems, marking up large numbers of hierarchical tags, using n-gram models for large n and a variety of escape methods. Four corpora are discussed, including the bibliography corpus of 14682 bibliographies laid out in seven standard styles using the BIBTEX system and markedup in XML with every field from the original BIBTEX. Other corpora include the ROCLING Chinese text segmentation corpus, the Computists’ Communique corpus and the Reuters’ corpus. A detailed examination is presented of the methods of evaluating mark up algorithms, including computation complexity measures and correctness measures from the fields of information retrieval, string processing, machine learning and information theory. A new taxonomy of markup complexities is established and the properties of each taxon are examined in relation to the complexity of marked-up documents. The performance of the new heuristics and optimisation is examined using the four corpora

    The impact of pretrained language models on negation and speculation detection in cross-lingual medical text: Comparative study

    Get PDF
    Background: Negation and speculation are critical elements in natural language processing (NLP)-related tasks, such as information extraction, as these phenomena change the truth value of a proposition. In the clinical narrative that is informal, these linguistic facts are used extensively with the objective of indicating hypotheses, impressions, or negative findings. Previous state-of-the-art approaches addressed negation and speculation detection tasks using rule-based methods, but in the last few years, models based on machine learning and deep learning exploiting morphological, syntactic, and semantic features represented as spare and dense vectors have emerged. However, although such methods of named entity recognition (NER) employ a broad set of features, they are limited to existing pretrained models for a specific domain or language. Objective: As a fundamental subsystem of any information extraction pipeline, a system for cross-lingual and domain-independent negation and speculation detection was introduced with special focus on the biomedical scientific literature and clinical narrative. In this work, detection of negation and speculation was considered as a sequence-labeling task where cues and the scopes of both phenomena are recognized as a sequence of nested labels recognized in a single step. Methods: We proposed the following two approaches for negation and speculation detection: (1) bidirectional long short-term memory (Bi-LSTM) and conditional random field using character, word, and sense embeddings to deal with the extraction of semantic, syntactic, and contextual patterns and (2) bidirectional encoder representations for transformers (BERT) with fine tuning for NER. Results: The approach was evaluated for English and Spanish languages on biomedical and review text, particularly with the BioScope corpus, IULA corpus, and SFU Spanish Review corpus, with F-measures of 86.6%, 85.0%, and 88.1%, respectively, for NeuroNER and 86.4%, 80.8%, and 91.7%, respectively, for BERT. Conclusions: These results show that these architectures perform considerably better than the previous rule-based and conventional machine learning-based systems. Moreover, our analysis results show that pretrained word embedding and particularly contextualized embedding for biomedical corpora help to understand complexities inherent to biomedical text.This work was supported by the Research Program of the Ministry of Economy and Competitiveness, Government of Spain (DeepEMR Project TIN2017-87548-C2-1-R)

    Iterated Classification of Document Images

    Get PDF
    • 

    corecore