736 research outputs found

    A conditional neural fields model for protein threading

    Get PDF
    Motivation: Alignment errors are still the main bottleneck for current template-based protein modeling (TM) methods, including protein threading and homology modeling, especially when the sequence identity between two proteins under consideration is low (<30%)

    MRFalign: Protein Homology Detection through Alignment of Markov Random Fields

    Full text link
    Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/.Comment: Accepted by both RECOMB 2014 and PLOS Computational Biolog

    Protein alignment based on higher order conditional random fields for template-based modeling

    Get PDF
    The query-template alignment of proteins is one of the most critical steps of template-based modeling methods used to predict the 3D structure of a query protein. This alignment can be interpreted as a temporal classification or structured prediction task and first order Conditional Random Fields have been proposed for protein alignment and proven to be rather successful. Some other popular structured prediction problems, such as speech or image classification, have gained from the use of higher order Conditional Random Fields due to the well known higher order correlations that exist between their labels and features. In this paper, we propose and describe the use of higher order Conditional Random Fields for query-template protein alignment. The experiments carried out on different public datasets validate our proposal, especially on distantly-related protein pairs which are the most difficult to align.This research was supported by Project P12.TIC.1485 funded by Consejeria de Economia, Innovacion y Ciencia (Junta de Andalucia) and Spanish MINECO/FEDER Project TEC2016-80141- P

    Protein Fold Recognition from Sequences using Convolutional and Recurrent Neural Networks

    Get PDF
    The identification of a protein fold type from its amino acid sequence provides important insights about the protein 3D structure. In this paper, we propose a deep learning architecture that can process protein residue-level features to address the protein fold recognition task. Our neural network model combines 1D-convolutional layers with gated recurrent unit (GRU) layers. The GRU cells, as recurrent layers, cope with the processing issues associated to the highly variable protein sequence lengths and so extract a fold-related embedding of fixed size for each protein domain. These embeddings are then used to perform the pairwise fold recognition task, which is based on transferring the fold type of the most similar template structure. We compare our model with several template-based and deep learning-based methods from the state-of-the-art. The evaluation results over the well-known LINDAHL and SCOP_TEST sets,along with a proposed LINDAHL test set updated to SCOP 1.75, show that our embeddings perform significantly better than these methods, specially at the fold level. Supplementary material, source code and trained models are available at http://sigmat.ugr.es/~amelia/CNN-GRU-RF+/
    corecore