197 research outputs found

    Polyhedral techniques in combinatorial optimization II: applications and computations

    Get PDF
    The polyhedral approach is one of the most powerful techniques available for solving hard combinatorial optimization problems. The main idea behind the technique is to consider the linear relaxation of the integer combinatorial optimization problem, and try to iteratively strengthen the linear formulation by adding violated strong valid inequalities, i.e., inequalities that are violated by the current fractional solution but satisfied by all feasible solutions, and that define high-dimensional faces, preferably facets, of the convex hull of feasible solutions. If we have the complete description of the convex hull of feasible solutions at hand all extreme points of this formulation are integral, which means that we can solve the problem as a linear programming problem. Linear programming problems are known to be computationally easy. In Part 1 of this article we discuss theoretical aspects of polyhedral techniques. Here we will mainly concentrate on the computational aspects. In particular we discuss how polyhedral results are used in cutting plane algorithms. We also consider a few theoretical issues not treated in Part 1, such as techniques for proving that a certain inequality is facet defining, and that a certain linear formulation gives a complete description of the convex hull of feasible solutions. We conclude the article by briefly mentioning some alternative techniques for solving combinatorial optimization problems

    Polyhedral techniques in combinatorial optimization

    Get PDF

    Polyhedral techniques in combinatorial optimization

    Get PDF
    Combinatorial optimization problems appear in many disciplines ranging from management and logistics to mathematics, physics, and chemistry. These problems are usually relatively easy to formulate mathematically, but most of them are computationally hard due to the restriction that a subset of the variables have to take integral values. During the last two decades there has been a remarkable progress in techniques based on the polyhedral description of combinatorial problems. leading to a large increase in the size of several problem types that can be solved. The basic idea behind polyhedral techniques is to derive a good linear formulation of the set of solutions by identifying linear inequalities that can be proved to be necessary in the description of the convex hull of feasible solutions. Ideally we can then solve the problem as a linear programming problem, which can be done efficiently. The purpose of this manuscript is to give an overview of the developments in polyhedral theory, starting with the pioneering work by Dantzig, Fulkerson and Johnson on the traveling salesman problem, and by Gomory on integer programming. We also present some modern applications, and computational experience

    Efficiently Constructing Convex Approximation Sets in Multiobjective Optimization Problems

    Full text link
    Convex approximation sets for multiobjective optimization problems are a well-studied relaxation of the common notion of approximation sets. Instead of approximating each image of a feasible solution by the image of some solution in the approximation set up to a multiplicative factor in each component, a convex approximation set only requires this multiplicative approximation to be achieved by some convex combination of finitely many images of solutions in the set. This makes convex approximation sets efficiently computable for a wide range of multiobjective problems - even for many problems for which (classic) approximations sets are hard to compute. In this article, we propose a polynomial-time algorithm to compute convex approximation sets that builds upon an exact or approximate algorithm for the weighted sum scalarization and is, therefore, applicable to a large variety of multiobjective optimization problems. The provided convex approximation quality is arbitrarily close to the approximation quality of the underlying algorithm for the weighted sum scalarization. In essence, our algorithm can be interpreted as an approximate variant of the dual variant of Benson's Outer Approximation Algorithm. Thus, in contrast to existing convex approximation algorithms from the literature, information on solutions obtained during the approximation process is utilized to significantly reduce both the practical running time and the cardinality of the returned solution sets while still guaranteeing the same worst-case approximation quality. We underpin these advantages by the first comparison of all existing convex approximation algorithms on several instances of the triobjective knapsack problem and the triobjective symmetric metric traveling salesman problem

    Two row mixed integer cuts via lifting

    Get PDF
    Recently, Andersen et al. [1], Borozan and Cornuéjols [6] and Cornuéjols and Margot [9] characterized extreme inequalities of a system of two rows with two free integer variables and nonnegative continuous variables. These inequalities are either split cuts or intersection cuts derived using maximal lattice-free convex sets. In order to use these inequalities to obtain cuts from two rows of a general simplex tableau, one approach is to extend the system to include all possible nonnegative integer variables (giving the two-row mixed integer infinite-group problem), and to develop lifting functions giving the coefficients of the integer variables in the corresponding inequalities. In this paper, we study the characteristics of these lifting functions. We begin by observing that functions giving valid coefficients for the nonnegative integer variables can be constructed by lifting a subset of the integer variables and then applying the fill-in procedure presented in Johnson [23]. We present conditions for these 'general fill-in functions" to be extreme for the two-row mixed integer infinite-group problem. We then show that there exists a unique 'trivial' lifting function that yields extreme inequalities when starting from a maximal lattice-free triangle with multiple integer points in the relative interior of one of its sides, or a maximal lattice-free triangle with integral vertices and one integer point in the relative interior of each side. In all other cases (maximal lattice-free triangle with one integer point in the relative interior of each side and non-integral vertices, and maximal lattice-free quadrilaterals), non-unique lifting functions may yield distinct extreme inequalities. For the case of a triangle with one integer point in the relative interior of each side and non-integral vertices, we present sufficient conditions to yield an extreme inequality for the two-row mixed integer infinite-group problem.

    Quadratic Binary Programming Models in Computational Biology

    Get PDF
    In this paper we formulate four problems in computational molecular biology as 0-1 quadratic programs. These problems are all NP-hard and the current solution methods used in practice consist of heuristics or approximation algorithms tailored to each problem. Using test problems from scientific databases, we address the question, “Can a general-purpose solver obtain good answers in reasonable time?” In addition, we use the latest heuristics as incumbent solutions to address the question, “Can a general-purpose solver confirm optimality or find an improved solution in reasonable time?” Our computational experiments compare four different reformulation methods: three forms of linearization and one form of quadratic convexification

    Transitive Packing: A Unifying Concept in Combinatorial Optimization

    Get PDF
    This paper attempts to give a better understanding of the facial structure of previously separately investigated polyhedra. It introduces the notion of transitive packing and the transitive packing polytope. Polytopes that turn out to be special cases of the transitive packing polytope are, among others, the node packing polytope, the acyclic subdigraph polytope, the bipartite subgraph polytope, the planar subgraph polytope, the clique partitioning polytope, the partition polytope, the transitive acyclic subdigraph polytope, the interval order polytope, and the relatively transitive subgraph polytope. We give cutting plane proofs for several rich classes of valid inequalities of the transitive packing polytope,in this way introducing generalized cycle, generalized clique, generalized antihole, generalized antiweb, and odd partition inequalities. These classes subsume several known classes of valid inequalities for several of the special cases and give also many new inequalities for several other special cases. For some of the classes we also prove a lower bound for their Gomory-Chvdtal rank. Finally, we relate the concept of transitive packing to generalized (set) packing and covering as well as to balanced and ideal matrices

    Vašek Chvátal: A Very Short Introduction

    Full text link
    corecore