641 research outputs found

    Open Government Architecture: The evolution of De Jure Standards, Consortium Standards, and Open Source Software

    Get PDF
    Conducted for the Treasury Board of Québec, this study seeks to present recent contributions to the evolution, within an enterprise architecture context, of de jure and de facto standards by various actors in the milieu, industrial consortia, and international standardization committees active in open source software. In order to be able to achieve its goals of delivering services to citizens and society, the Government of Québec must integrate its computer systems to create a service oriented open architecture. Following in the footsteps of various other governments and the European Community, such an integration will require elaboration of an interoperability framework, i.e. a structured set of de jure standards, de facto standards, specifications, and policies allowing computer systems to interoperate. Thus, we recommend that the Government of Québec: Pursue its endeavours to elaborate an interoperability framework for its computer systems that is based on open de jure and de facto standards. This framework should not only reflect the criteria enumerated in this study and apply to internal computer systems, but it should also extend to Web services supplied to organizations outside of the government. This framework should explicitly prioritize open source de jure and de facto standards and include a policy covering free software. The interoperability framework should initially draw on that of the state of Massachusetts. In the medium term, is should be as comprehensive as that of the British government. Integrate this interoperability framework into its enterprise architecture. Publish this interoperability framework with its enterprise architecture. Specify this interoperability framework in its calls for tenders. Elaborate a policy of compliance with this framework for all new applications.

    Reference ontologies to support the development of global production network systems

    Get PDF
    In competitive and time sensitive market places, organisations are tasked with providing product lifecycle management (PLM) approaches to achieve and maintain competitive advantage, react to change and understand the balance of possible options when making decisions on complex multi-faceted problems, global production networks (GPN) is one such domain in which this applies. When designing and configuring GPN to develop, manufacture and deliver product–service provision, information requirements that affect decision making become more complex. The application of reference ontologies to a domain and its related information requirements can enhance and accelerate the development of new product-service systems with a view towards the seamless interchange of information or interoperability between systems and domains. This paper presents (i) preliminary results for the capture and modelling of end-user information, (ii) an initial higher level reference core ontology for the development of reference ontologies and (iii) the formal logical modelling of Level 1 of the FLEXINET reference ontology using a Common Logic based approach

    From Data to Decision Support in Manufacturing

    Get PDF
    Digitalization is changing society, industry, and how business is done. For new companies that are more or less born digital, there is the opportunity to use and benefit from the capabilities offered by the new digital technologies, of which data-driven decision-making forms a crucial part. The manufacturing industry is facing the Fourth Industrial Revolution, but most manufacturing organizations are lagging behind in their digital transformation. This is due to the technical and organizational challenges they are experiencing. Based on this current state description and existing gap, the vision, aim, and research questions of this thesis are: Vision - future manufacturing organization to be driven by fact-based decision support based on data rather than of relying mainly on intuition and experience.Aim - to show manufacturing organizations the applicability of digital technologies in digitalizing manufacturing system data to support decision-making and how data sharing may be achieved.Research Question 1. How do manufacturing system lifecycle decisions influence the requirements of data collection towards interoperability? Research Question 2. What makes interoperability standardization applicable to sharing data in a manufacturing system’s lifecycle?This research is applied, addressing real-world problems in manufacturing. For this reason, the main objective is to solve the problem at hand, and data collection methods will be selected that can help address it. This can best be explained by taking a pragmatic worldview and using mixed methods approach that combines quantitative and qualitative methods. The research upon which this thesis is based draws on the results of three research projects involving the active participation of manufacturing companies. The data collection methods included experiments, interviews (focus group and semi-structured), technical development, literature review, and so on. The results are divided into three areas: 1) connected factory, 2) standard representation of machine model data, and 3) the digital twin in smart manufacturing. Connected factory addresses the question of how a mobile connectivity solution, 5G, may be used in a factory setting and demonstrates how the connectivity solution should be planned and how new data from a connected machine may support an operator in decision-making. The standard representation of machine model data demonstrates how an international standard may be used more widely to support the sharing and reuse of information. The digital twin in smart manufacturing investigates the reasons why there are so few real-world examples of this. The findings reveal that a manufacturing system’s lifecycle impacts data requirements, including a need for data accuracy in design, speed of data in operation (to allow operators to act upon events), and availability of historical data in maintenance (for finding root causes and planning). The volume of data was identified as important to all lifecycles. The applicability of standards was found to depend on: 1) the technology providers’ willingness to adapt standards, 2) enforcement by OEMs and larger actors further down a supply chain, 3) the development of standards that consider the user, and 4) when standards are required for infrastructure reasons. Based on the results and findings obtained, it may be stated that it is important to determine what actual manufacturing problem should be addressed by digital technology. There is a tendency to view this change from the perspective of what the digital technology might solve (a technology push), rather than setting aside the solution and focusing on what problem should be solved (a technology pull). This work also reveals the importance of the collaboration between industry and academia making progress in the digital transformation of manufacturing. Proofs-of-concept and demonstrators of how digital technologies might be used are also important tools in helping industry in how they can address a digital transformation

    Special issue on conceptual modeling - 34th International Conference on Conceptual Modeling (ER 2015)

    Full text link
    Paul Johannesson; Mong Li Lee; Liddle, S.; Opdahl, A.; Pastor López, O. (2017). Special issue on conceptual modeling - 34th International Conference on Conceptual Modeling (ER 2015). Data & Knowledge Engineering. 109:1-2. doi:10.1016/j.datak.2017.03.001S1210

    Current trends on ICT technologies for enterprise information s²ystems

    Get PDF
    The proposed paper discusses the current trends on ICT technologies for Enterprise Information Systems. The paper starts by defining four big challenges of the next generation of information systems: (1) Data Value Chain Management; (2) Context Awareness; (3) Interaction and Visualization; and (4) Human Learning. The major contributions towards the next generation of information systems are elaborated based on the work and experience of the authors and their teams. This includes: (1) Ontology based solutions for semantic interoperability; (2) Context aware infrastructures; (3) Product Avatar based interactions; and (4) Human learning. Finally the current state of research is discussed highlighting the impact of these solutions on the economic and social landscape

    Challenges and Founding Pillars for a Manufacturing Platform to Support Value Networks Operating in a Circular Economy Framework

    Get PDF
    This research received no external funding. Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Circularity is clearly a competitive advantage and a market opportunity for European industries. From this perspective, while digitalization is largely recognized as an accelerator and an enabler of Circular Economy, the fact that European industry is strong but fragmented (highly special-ized medium-and small-sized companies have different needs and different tools) naturally results in the proliferation of commercial platforms for digitalized manufacturing. If such fragmentation is not properly addressed, it will eventually become a threat to European competitiveness. Despite some examples, value networks still do not operate in a seamless, transparent, and effective way. This paper addresses the challenges and the resulting technical funding pillars for an IDS (International Data Space) manufacturing platform meant to empower a fully digital circular thread of products and services.publishersversionpublishe

    Blockchain technology to secure data for digital twins throughout smart buildings’ life cycle in the context of the circular economy

    Full text link
    Blockchain technology (BCT) can be leveraged for digital twins (DT) to enhance data security, collaboration, efficiency, and sustainability in the construction industry (CI) 4.0. This study aims to develop a novel technological framework and software architecture using BCT for DT throughout the lifecycle of smart building projects in the context of the circular economy (CE). The study identifies key challenges and technological factors affecting BCT adoption. It also identifies which project data types can benefit from BCT and the key factors and non-functional requirements (NFRs) necessary for the adoption of blockchain based digital twins (BCDT) in CI 4.0. The study finally proposes a software architecture and smart contract framework for BCDT decentralized applications (DApps) throughout the lifecycle of smart infrastructure projects. The study offers a technological framework – the decentralized digital twin cycle (DDTC) – with BCT to enhance trust, security, decentralization, efficiency, traceability, and transparency of information. The study found that the key data from the project lifecycle relevant for BCDTs relate to the BIM dimensions (3D, 4D, 5D, 6D, 7D, and 8D) and a novel contractual dimension (cD) is also proposed. Additionally, BCDT maturity Level 4 is proposed, leveraging BCT to enhance collaboration, process automation, and data sharing within a decentralized data value chain. The main NFRs for BCDTs are security, privacy, interoperability, data ownership, data integrity, and the decentralization and scalability of data storage. A five layered software architecture and a smart contracts framework using Non-Fungible Tokens (NFTs) are offered to address key industry use cases and their functional and non-functional requirements. The framework narrows the gaps identified around network governance, scalability, decentralization, interoperability, energy efficiency, computational requirements, and the integration of BCT with IoT, BIM, and DT. A cost analysis permitted developing criteria to evaluate the suitability of blockchain networks for BCDT applications in CI 4.0 based on key blockchain properties (security, decentralization, scalability, and interoperability). The study provides an industry-specific analysis and technological approach for BCDT adoption to address key challenges and improve sustainability for the CI 4.0. The findings provide key building blocks for industry practitioners to adopt and develop BCDT DApps further. The framework enables a paradigm shift towards decentralized ecosystems of united BCDTs where trust, collaboration, data sharing, information security, efficiency, and sustainability are improved throughout the lifecycle of smart infrastructure projects within a decentralized CE (DCE)

    原子力プラントのライフサイクル情報管理に基づく廃炉シミュレーションに関する研究

    Get PDF
    Tohoku University博士(情報科学)thesi

    Product to process lifecycle management in assembly automation systems

    Get PDF
    Presently, the automotive industry is facing enormous pressure due to global competition and ever changing legislative, economic and customer demands. Product and process development in the automotive manufacturing industry is a challenging task for many reasons. Current product life cycle management (PLM) systems tend to be product-focussed. Though, information about processes and resources are there but mostly linked to the product. Process is an important aspect, especially in assembly automation systems that link products to their manufacturing resources. This paper presents a process-centric approach to improve PLM systems in large-scale manufacturing companies, especially in the powertrain sector of the automotive industry. The idea is to integrate the information related to key engineering chains i.e. products, processes and resources based upon PLM philosophy and shift the trend of product-focussed lifecycle management to process-focussed lifecycle management, the outcome of which is the Product, Process and Resource Lifecycle Management not PLM only

    Cyber-physical systems (CPS) in supply chain management: From foundations to practical implementation

    Get PDF
    Since 2015 developments such as Industry 4.0 and cyber-physical production systems on the technology side, and approaches such as flexible and smart manufacturing systems hold great potential. These in turn give rise to special requirements that the production planning, control and monitoring, among others, needing a paradigm shift to exploit the full potential of these methods and techniques. Starting from foundations in Cyber Physical Systems (CPS), building upon definitions and findings reported by literature, a practical example of innovative Cyber Physical Supply Chain Planning System (CPS2) is provided. The paper clarifies the advantages of cyber-physical systems in the production planning, controlling and monitoring perspective with respect to manufacturing, logistics and related planning practices. A set of basic features of CPS2 systems are discussed and addressed by contextualizing service orientation architecture and microservices components with respect to supply chain management collaboration and cooperation practices. The identification of specific technologies behind those functions, within the developed research, provides some practical insight if the interesting CPS2 potential
    corecore