1,498 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    A Comprehensive Survey on the Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions

    Get PDF
    The Internet of Things (IoT) can enable seamless communication between millions of billions of objects. As IoT applications continue to grow, they face several challenges, including high latency, limited processing and storage capacity, and network failures. To address these stated challenges, the fog computing paradigm has been introduced, purpose is to integrate the cloud computing paradigm with IoT to bring the cloud resources closer to the IoT devices. Thus, it extends the computing, storage, and networking facilities toward the edge of the network. However, data processing and storage occur at the IoT devices themselves in the fog-based IoT network, eliminating the need to transmit the data to the cloud. Further, it also provides a faster response as compared to the cloud. Unfortunately, the characteristics of fog-based IoT networks arise traditional real-time security challenges, which may increase severe concern to the end-users. However, this paper aims to focus on fog-based IoT communication, targeting real-time security challenges. In this paper, we examine the layered architecture of fog-based IoT networks along working of IoT applications operating within the context of the fog computing paradigm. Moreover, we highlight real-time security challenges and explore several existing solutions proposed to tackle these challenges. In the end, we investigate the research challenges that need to be addressed and explore potential future research directions that should be followed by the research community.©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Reengineering and development of IoT Systems for Home Automation

    Get PDF
    BEng Thesis, Instituto Superior de Engenharia do Porto.With the increasing adoption of technology in today’s houses, electricity is at an all-time high demand. In fact, given the plethora of vital electricity-powered appliances used every day, such as refrigerators, washing machines, and so forth, it has been proven difficult to even handle all devices’ electric consumption. To reduce consumption costs and turn it into a more manageable process, the concept of flex-offers was created. A flex-offer is built around scheduling energy usage in conjunction with the prices of electricity, as provided by an energy market. More specifically, a flex-offer is an energy consumption offer containing the user’s energy consumption flexibility, which is sent to an entity called the Aggregator, who aggregates together flex-offers from multiple parties, bargains with the energy market, and responds to each flex-offer with a schedule that meets the lowest prices for consumption, while still satisfying the users’ needs. By using flex-offers on a house’s equipment, the idea of FlexHousing was born. The aspired goal of the CISTER Research Center’s FlexHousing project is to deliver a platform where users can register their smart appliances, regardless of its brand and distributor, set up preferences for the devices’ usage, and let the system manage the energy consumption and device activation schedules based on the energy market prices. A previous project had already built a prototype of the FlexHousing system. Nevertheless, the original platform had many limitations and lacked maturity from a software engineering point of view, and the goal of this internship is to apply a reengineering process on the FlexHousing project, while also adding new features to it. Thus, the project’s domain model, its database, and class structures were altered to satisfy the new requirements. Furthermore, its web platform was rebuilt from the ground up. Also, a new interface was developed to facilitate support for devices of different brands. As a proof of concept for the benefits provided by this new interface, a connection with a new device (Sonoff Pow) was also established. Moreover, a new functionality was developed to identify a device’s type of appliance based on its energy consumption, in other words, to specify if a device is, for instance, a refrigerator or not. Finally, another new feature was added in which, based on a device’s type and its energy consumption pattern, the flex-offer creation is automated, minimizing user input. As planned, the FlexHousing platform now supports multiple types of devices, and has a software interface to support more types in the future with minimal effort. The flex-offer creation process has been simplified and is now partially automated. Finally, the web platform’s UI has been updated, becoming more intuitive and appealing to the user.info:eu-repo/semantics/publishedVersio

    A Lightweight Attribute-Based Access Control System for IoT.

    Get PDF
    The evolution of the Internet of things (IoT) has made a significant impact on our daily and professional life. Home and office automation are now even easier with the implementation of IoT. Multiple sensors are connected to monitor the production line, or to control an unmanned environment is now a reality. Sensors are now smart enough to sense an environment and also communicate over the Internet. That is why, implementing an IoT system within the production line, hospitals, office space, or at home could be beneficial as a human can interact over the Internet at any time to know the environment. 61% of International Data Corporation (IDC) surveyed organizations are actively pursuing IoT initiatives, and 6.8% of the average IT budgets is also being allocated to IoT initiatives. However, the security risks are still unknown, and 34% of respondents pointed out that data safety is their primary concern [1]. IoT sensors are being open to the users with portable/mobile devices. These mobile devices have enough computational power and make it di cult to track down who is using the data or resources. That is why this research focuses on proposing a dynamic access control system for portable devices in IoT environment. The proposed architecture evaluates user context information from mobile devices and calculates trust value by matching with de ned policies to mitigate IoT risks. The cloud application acts as a trust module or gatekeeper that provides the authorization access to READ, WRITE, and control the IoT sensor. The goal of this thesis is to offer an access control system that is dynamic, flexible, and lightweight. This proposed access control architecture can secure IoT sensors as well as protect sensor data. A prototype of the working model of the cloud, mobile application, and sensors is developed to prove the concept and evaluated against automated generated web requests to measure the response time and performance overhead. The results show that the proposed system requires less interaction time than the state-of-the-art methods

    Useful shortcuts: Using design heuristics for consent and permission in smart home devices

    Get PDF
    Prior research in smart home privacy highlights significant issues with how users understand, permit, and consent to data use. Some of the underlying issues point to unclear data protection regulations, lack of design principles, and dark patterns. In this paper, we explore heuristics (also called “mental shortcuts” or “rules of thumb”) as a means to address security and privacy design challenges in smart homes. First, we systematically analyze an existing body of data on smart homes to derive a set of heuristics for the design of consent and permission. Second, we apply these heuristics in four participatory co-design workshops (n = 14) and report on their use. Third, we analyze the use of the heuristics through thematic analysis highlighting heuristic application, purpose, and effectiveness in successful and unsuccessful design outcomes. We conclude with a discussion of the wider challenges, opportunities, and future work for improving design practices for consent in smart homes

    From Data Transparency and Security to Interfirm Collaboration-A Blockchain Technology Perspective

    Get PDF
    In recent years, blockchain technology has gained significant attention and recognition in both academic and practical contexts, due to its remarkable attributes of scalability, security, and sustainability. However, despite the growing interest, there is still a lack of exploration regarding the potential of blockchain to improve data transparency, enhance information security, and facilitate knowledge sharing. To address this gap, this study conducts a focused review of recent studies to examine precisely these aspects of blockchain technology. Various paradigms that highlight how the utilization of blockchain can enhance data transparency, bolster information security, and enable seamless knowledge sharing among organizations, are identified and proposed. These advancements surpass the capabilities of traditional methods of storing and sharing information

    Security Management Framework for the Internet of Things

    Get PDF
    The increase in the design and development of wireless communication technologies offers multiple opportunities for the management and control of cyber-physical systems with connections between smart and autonomous devices, which provide the delivery of simplified data through the use of cloud computing. Given this relationship with the Internet of Things (IoT), it established the concept of pervasive computing that allows any object to communicate with services, sensors, people, and objects without human intervention. However, the rapid growth of connectivity with smart applications through autonomous systems connected to the internet has allowed the exposure of numerous vulnerabilities in IoT systems by malicious users. This dissertation developed a novel ontology-based cybersecurity framework to improve security in IoT systems using an ontological analysis to adapt appropriate security services addressed to threats. The composition of this proposal explores two approaches: (1) design time, which offers a dynamic method to build security services through the application of a methodology directed to models considering existing business processes; and (2) execution time, which involves monitoring the IoT environment, classifying vulnerabilities and threats, and acting in the environment, ensuring the correct adaptation of existing services. The validation approach was used to demonstrate the feasibility of implementing the proposed cybersecurity framework. It implies the evaluation of the ontology to offer a qualitative evaluation based on the analysis of several criteria and also a proof of concept implemented and tested using specific industrial scenarios. This dissertation has been verified by adopting a methodology that follows the acceptance in the research community through technical validation in the application of the concept in an industrial setting.O aumento no projeto e desenvolvimento de tecnologias de comunicação sem fio oferece múltiplas oportunidades para a gestão e controle de sistemas ciber-físicos com conexões entre dispositivos inteligentes e autônomos, os quais proporcionam a entrega de dados simplificados através do uso da computação em nuvem. Diante dessa relação com a Internet das Coisas (IoT) estabeleceu-se o conceito de computação pervasiva que permite que qualquer objeto possa comunicar com os serviços, sensores, pessoas e objetos sem intervenção humana. Entretanto, o rápido crescimento da conectividade com as aplicações inteligentes através de sistemas autônomos conectados com a internet permitiu a exposição de inúmeras vulnerabilidades dos sistemas IoT para usuários maliciosos. Esta dissertação desenvolveu um novo framework de cibersegurança baseada em ontologia para melhorar a segurança em sistemas IoT usando uma análise ontológica para a adaptação de serviços de segurança apropriados endereçados para as ameaças. A composição dessa proposta explora duas abordagens: (1) tempo de projeto, o qual oferece um método dinâmico para construir serviços de segurança através da aplicação de uma metodologia dirigida a modelos, considerando processos empresariais existentes; e (2) tempo de execução, o qual envolve o monitoramento do ambiente IoT, a classificação de vulnerabilidades e ameaças, e a atuação no ambiente garantindo a correta adaptação dos serviços existentes. Duas abordagens de validação foram utilizadas para demonstrar a viabilidade da implementação do framework de cibersegurança proposto. Isto implica na avaliação da ontologia para oferecer uma avaliação qualitativa baseada na análise de diversos critérios e também uma prova de conceito implementada e testada usando cenários específicos. Esta dissertação foi validada adotando uma metodologia que segue a validação na comunidade científica através da validação técnica na aplicação do nosso conceito em um cenário industrial
    corecore