963 research outputs found

    Bindings and RESTlets: a novel set of CoAP-based application enablers to build IoT applications

    Get PDF
    Sensors and actuators are becoming important components of Internet of Things (IoT) applications. Today, several approaches exist to facilitate communication of sensors and actuators in IoT applications. Most communications go through often proprietary gateways requiring availability of the gateway for each and every interaction between sensors and actuators. Sometimes, the gateway does some processing of the sensor data before triggering actuators. Other approaches put this processing logic further in the cloud. These approaches introduce significant latencies and increased number of packets. In this paper, we introduce a CoAP-based mechanism for direct binding of sensors and actuators. This flexible binding solution is utilized further to build IoT applications through RESTlets. RESTlets are defined to accept inputs and produce outputs after performing some processing tasks. Sensors and actuators could be associated with RESTlets (which can be hosted on any device) through the flexible binding mechanism we introduced. This approach facilitates decentralized IoT application development by placing all or part of the processing logic in Low power and Lossy Networks (LLNs). We run several tests to compare the performance of our solution with existing solutions and found out that our solution reduces communication delay and number of packets in the LLN

    Code generation for RESTful APIs in HEADREST

    Get PDF
    Tese de mestrado, Engenharia Informática (Engenharia de Software) Universidade de Lisboa, Faculdade de Ciências, 2018Os serviços web com APIs que aderem ao estilo arquitetural REST, conhecidos por serviços web RESTful, são atualmente muito populares. Estes serviços seguem um estilo cliente-servidor, com interações sem estado baseadas nos verbos disponibilizados pela norma HTTP. Como meio de especificar formalmente a interação entre os clientes e fornecedores de serviços REST, várias linguagens de definição de interfaces (IDL) têm sido propostas. No entanto, na sua maioria, limitam-se ao nível sintático das interfaces que especificam e à descrição das estruturas de dados e dos pontos de interação. A linguagem HEADREST foi desenvolvida como uma IDL que permite ultrapassar estas limitações, suportando a descrição das APIs RESTful também ao nível semântico. Através de tipos e asserções é possível em HEADREST não só definir a estrutura dos dados trocados mas também correlacionar o output com input e o estado do servidor. Uma das principais vantagens de ter descrições formais de APIs RESTful é a capacidade de gerar código boilerplate tanto para clientes como fornecedores. Este trabalho endereça o problema de geração de código para as APIs RESTful descritas com HEADREST e investiga de que forma as técnicas de geração de código existentes para os aspectos sintáticos das APIs RESTful podem ser estendidas para levar em conta também as propriedades comportamentais que podem ser descritas em HEADREST. Tendo em conta que a linguagem HEADREST adota muitos conceitos da Open API Specification (OAS), o trabalho desenvolvido capitaliza nas técnicas de geração de código desenvolvidas para a OAS e envolveu o desenvolvimento de protótipos de geração de código cliente e servidor a partir de especificações HEADREST.Web services with APIs that adhere to the REST architectural style, known as RESTful web services, have become popular. These services follow a client-server style, with stateless interactions based on standard HTTP verbs. In an effort to formally specify the interaction between clients and providers of RESTful services, various interface definition languages (IDL) have been proposed. However, for the most part, they limit themselves to the syntactic level of the interfaces and the description of the data structures and the interaction points. The HEADREST language was developed as an IDL that addresses these limitations, supporting the description of the RESTful APIs also at the semantical level. Through the use of types and assertions we not only define the structure of the data transmitted but also relate output with input and the state of the server. One of the main advantages of having formal descriptions of RESTful APIs is the ability to generate a lot of boilerplate code for both clients and servers. This work addresses the problem of code generation for RESTful APIs described in HEADREST and aims to investigate how the existing code generation techniques for the syntactical aspects of RESTful APIs can be extended to take into account also the behavioural properties that can be described in HEADREST. Given that HEADREST adopts many concepts from the Open API Specification (OAS), this work capitalised on the code generation tools available for OAS and encompassed the development of a prototypical implementation of a code generator for clients and servers from HEADREST specifications

    Integration of heterogeneous devices and communication models via the cloud in the constrained internet of things

    Get PDF
    As the Internet of Things continues to expand in the coming years, the need for services that span multiple IoT application domains will continue to increase in order to realize the efficiency gains promised by the IoT. Today, however, service developers looking to add value on top of existing IoT systems are faced with very heterogeneous devices and systems. These systems implement a wide variety of network connectivity options, protocols (proprietary or standards-based), and communication methods all of which are unknown to a service developer that is new to the IoT. Even within one IoT standard, a device typically has multiple options for communicating with others. In order to alleviate service developers from these concerns, this paper presents a cloud-based platform for integrating heterogeneous constrained IoT devices and communication models into services. Our evaluation shows that the impact of our approach on the operation of constrained devices is minimal while providing a tangible benefit in service integration of low-resource IoT devices. A proof of concept demonstrates the latter by means of a control and management dashboard for constrained devices that was implemented on top of the presented platform. The results of our work enable service developers to more easily implement and deploy services that span a wide variety of IoT application domains

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)
    corecore