100,279 research outputs found

    Simulation of complex environments:the Fuzzy Cognitive Agent

    Get PDF
    The world is becoming increasingly competitive by the action of liberalised national and global markets. In parallel these markets have become increasingly complex making it difficult for participants to optimise their trading actions. In response, many differing computer simulation techniques have been investigated to develop either a deeper understanding of these evolving markets or to create effective system support tools. In this paper we report our efforts to develop a novel simulation platform using fuzzy cognitive agents (FCA). Our approach encapsulates fuzzy cognitive maps (FCM) generated on the Matlab Simulink platform within commercially available agent software. We firstly present our implementation of Matlab Simulink FCMs and then show how such FCMs can be integrated within a conceptual FCA architecture. Finally we report on our efforts to realise an FCA by the integration of a Matlab Simulink based FCM with the Jack Intelligent Agent Toolkit

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Consciousness, Meaning and the Future Phenomenology

    Get PDF
    Phenomenological states are generally considered sources of intrinsic motivation for autonomous biological agents. In this paper we will address the issue of exploiting these states for robust goal-directed systems. We will provide an analysis of consciousness in terms of a precise definition of how an agent “understands” the informational flows entering the agent. This model of consciousness and understanding is based in the analysis and evaluation of phenomenological states along potential trajectories in the phase space of the agents. This implies that a possible strategy to follow in order to build autonomous but useful systems is to embed them with the particular, ad-hoc phenomenology that captures the requirements that define the system usefulness from a requirements-strict engineering viewpoint

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible
    • 

    corecore