633 research outputs found

    Bundle methods in nonsmooth DC optimization

    Get PDF
    Due to the complexity of many practical applications, we encounter optimization problems with nonsmooth functions, that is, functions which are not continuously differentiable everywhere. Classical gradient-based methods are not applicable to solve such problems, since they may fail in the nonsmooth setting. Therefore, it is imperative to develop numerical methods specifically designed for nonsmooth optimization. To date, bundle methods are considered to be the most efficient and reliable general purpose solvers for this type of problems. The idea in bundle methods is to approximate the subdifferential of the objective function by a bundle of subgradients. This information is then used to build a model for the objective. However, this model is typically convex and, due to this, it may be inaccurate and unable to adequately reflect the behaviour of the objective function in the nonconvex case. These circumstances motivate to design new bundle methods based on nonconvex models of the objective function. In this dissertation, the main focus is on nonsmooth DC optimization that constitutes an important and broad subclass of nonconvex optimization problems. A DC function can be presented as a difference of two convex functions. Thus, we can obtain a model that utilizes explicitly both the convexity and concavity of the objective by approximating separately the convex and concave parts. This way we end up with a nonconvex DC model describing the problem more accurately than the convex one. Based on the new DC model we introduce three different bundle methods. Two of them are designed for unconstrained DC optimization and the third one is capable of solving also multiobjective and constrained DC problems. The finite convergence is proved for each method. The numerical results demonstrate the efficiency of the methods and show the benefits obtained from the utilization of the DC decomposition. Even though the usage of the DC decomposition can improve the performance of the bundle methods, it is not always available or possible to construct. Thus, we present another bundle method for a general objective function implicitly collecting information about the DC structure. This method is developed for large-scale nonsmooth optimization and its convergence is proved for semismooth functions. The efficiency of the method is shown with numerical results. As an application of the developed methods, we consider the clusterwise linear regression (CLR) problems. By applying the support vector machines (SVM) approach a new model for these problems is proposed. The objective in the new formulation of the CLR problem is expressed as a DC function and a method based on one of the presented bundle methods is designed to solve it. Numerical results demonstrate robustness of the new approach to outliers.Monissa käytännön sovelluksissa tarkastelun kohteena oleva ongelma on monimutkainen ja joudutaan näin ollen mallintamaan epäsileillä funktioilla, jotka eivät välttämättä ole jatkuvasti differentioituvia kaikkialla. Klassisia gradienttiin perustuvia optimointimenetelmiä ei voida käyttää epäsileisiin tehtäviin, sillä epäsileillä funktioilla ei ole olemassa klassista gradienttia kaikkialla. Näin ollen epäsileään optimointiin on välttämätöntä kehittää omia numeerisia ratkaisumenetelmiä. Näistä kimppumenetelmiä pidetään tällä hetkellä kaikista tehokkaimpina ja luotettavimpina yleismenetelminä kyseisten tehtävien ratkaisemiseksi. Ideana kimppumenetelmissä on approksimoida kohdefunktion alidifferentiaalia kimpulla, joka on muodostettu keräämällä kohdefunktion aligradientteja edellisiltä iteraatiokierroksilta. Tätä tietoa hyödyntämällä voidaan muodostaa kohdefunktiolle malli, joka on alkuperäistä tehtävää helpompi ratkaista. Käytetty malli on tyypillisesti konveksi ja näin ollen se voi olla epätarkka ja kykenemätön esittämään alkuperäisen tehtävän rakennetta epäkonveksissa tapauksessa. Tästä syystä väitöskirjassa keskitytään kehittämään uusia kimppumenetelmiä, jotka mallinnusvaiheessa muodostavat kohdefunktiolle epäkonveksin mallin. Pääpaino väitöskirjassa on epäsileissä optimointitehtävissä, joissa funktiot voidaan esittää kahden konveksin funktion erotuksena (difference of two convex functions). Kyseisiä funktioita kutsutaan DC-funktioiksi ja ne muodostavat tärkeän ja laajan epäkonveksien funktioiden osajoukon. Tämä valinta mahdollistaa kohdefunktion konveksisuuden ja konkaavisuuden eksplisiittisen hyödyntämisen, sillä uusi malli kohdefunktiolle muodostetaan yhdistämällä erilliset konveksille ja konkaaville osalle rakennetut mallit. Tällä tavalla päädytään epäkonveksiin DC-malliin, joka pystyy kuvaamaan ratkaistavaa tehtävää tarkemmin kuin konveksi arvio. Väitöskirjassa esitetään kolme erilaista uuden DC-mallin pohjalta kehitettyä kimppumenetelmää sekä todistetaan menetelmien konvergenssit. Kaksi näistä menetelmistä on suunniteltu rajoitteettomaan DC-optimointiin ja kolmannella voidaan ratkaista myös monitavoitteisia ja rajoitteellisia DC-optimointitehtäviä. Numeeriset tulokset havainnollistavat menetelmien tehokkuutta sekä DC-hajotelman käytöstä saatuja etuja. Vaikka DC-hajotelman käyttö voi parantaa kimppumenetelmien suoritusta, sitä ei aina ole saatavilla tai mahdollista muodostaa. Tästä syystä väitöskirjassa esitetään myös neljäs kimppumenetelmä konvergenssitodistuksineen yleiselle kohdefunktiolle, jossa kerätään implisiittisesti tietoa kohdefunktion DC-rakenteesta. Menetelmä on kehitetty erityisesti suurille epäsileille optimointitehtäville ja sen tehokkuus osoitetaan numeerisella testauksella Sovelluksena väitöskirjassa tarkastellaan datalle klustereittain tehtävää lineaarista regressiota (clusterwise linear regression). Kyseiselle sovellukselle muodostetaan uusi malli hyödyntäen koneoppimisessa käytettyä SVM-lähestymistapaa (support vector machines approach) ja saatu kohdefunktio esitetään DC-funktiona. Näin ollen yhtä kehitetyistä kimppumenetelmistä sovelletaan tehtävän ratkaisemiseen. Numeeriset tulokset havainnollistavat uuden lähestymistavan robustisuutta ja tehokkuutta

    Rank-Based Learning and Local Model Based Evolutionary Algorithm for High-Dimensional Expensive Multi-Objective Problems

    Full text link
    Surrogate-assisted evolutionary algorithms have been widely developed to solve complex and computationally expensive multi-objective optimization problems in recent years. However, when dealing with high-dimensional optimization problems, the performance of these surrogate-assisted multi-objective evolutionary algorithms deteriorate drastically. In this work, a novel Classifier-assisted rank-based learning and Local Model based multi-objective Evolutionary Algorithm (CLMEA) is proposed for high-dimensional expensive multi-objective optimization problems. The proposed algorithm consists of three parts: classifier-assisted rank-based learning, hypervolume-based non-dominated search, and local search in the relatively sparse objective space. Specifically, a probabilistic neural network is built as classifier to divide the offspring into a number of ranks. The offspring in different ranks uses rank-based learning strategy to generate more promising and informative candidates for real function evaluations. Then, radial basis function networks are built as surrogates to approximate the objective functions. After searching non-dominated solutions assisted by the surrogate model, the candidates with higher hypervolume improvement are selected for real evaluations. Subsequently, in order to maintain the diversity of solutions, the most uncertain sample point from the non-dominated solutions measured by the crowding distance is selected as the guided parent to further infill in the uncertain region of the front. The experimental results of benchmark problems and a real-world application on geothermal reservoir heat extraction optimization demonstrate that the proposed algorithm shows superior performance compared with the state-of-the-art surrogate-assisted multi-objective evolutionary algorithms. The source code for this work is available at https://github.com/JellyChen7/CLMEA

    A Novel Multiobjective Cell Switch-Off Framework for Cellular Networks

    Get PDF
    Cell Switch-Off (CSO) is recognized as a promising approach to reduce the energy consumption in next-generation cellular networks. However, CSO poses serious challenges not only from the resource allocation perspective but also from the implementation point of view. Indeed, CSO represents a difficult optimization problem due to its NP-complete nature. Moreover, there are a number of important practical limitations in the implementation of CSO schemes, such as the need for minimizing the real-time complexity and the number of on-off/off-on transitions and CSO-induced handovers. This article introduces a novel approach to CSO based on multiobjective optimization that makes use of the statistical description of the service demand (known by operators). In addition, downlink and uplink coverage criteria are included and a comparative analysis between different models to characterize intercell interference is also presented to shed light on their impact on CSO. The framework distinguishes itself from other proposals in two ways: 1) The number of on-off/off-on transitions as well as handovers are minimized, and 2) the computationally-heavy part of the algorithm is executed offline, which makes its implementation feasible. The results show that the proposed scheme achieves substantial energy savings in small cell deployments where service demand is not uniformly distributed, without compromising the Quality-of-Service (QoS) or requiring heavy real-time processing

    Digital Filter Design Using Improved Artificial Bee Colony Algorithms

    Get PDF
    Digital filters are often used in digital signal processing applications. The design objective of a digital filter is to find the optimal set of filter coefficients, which satisfies the desired specifications of magnitude and group delay responses. Evolutionary algorithms are population-based meta-heuristic algorithms inspired by the biological behaviors of species. Compared to gradient-based optimization algorithms such as steepest descent and Newton’s like methods, these bio-inspired algorithms have the advantages of not getting stuck at local optima and being independent of the starting point in the solution space. The limitations of evolutionary algorithms include the presence of control parameters, problem specific tuning procedure, premature convergence and slower convergence rate. The artificial bee colony (ABC) algorithm is a swarm-based search meta-heuristic algorithm inspired by the foraging behaviors of honey bee colonies, with the benefit of a relatively fewer control parameters. In its original form, the ABC algorithm has certain limitations such as low convergence rate, and insufficient balance between exploration and exploitation in the search equations. In this dissertation, an ABC-AMR algorithm is proposed by incorporating an adaptive modification rate (AMR) into the original ABC algorithm to increase convergence rate by adjusting the balance between exploration and exploitation in the search equations through an adaptive determination of the number of parameters to be updated in every iteration. A constrained ABC-AMR algorithm is also developed for solving constrained optimization problems.There are many real-world problems requiring simultaneous optimizations of more than one conflicting objectives. Multiobjective (MO) optimization produces a set of feasible solutions called the Pareto front instead of a single optimum solution. For multiobjective optimization, if a decision maker’s preferences can be incorporated during the optimization process, the search process can be confined to the region of interest instead of searching the entire region. In this dissertation, two algorithms are developed for such incorporation. The first one is a reference-point-based MOABC algorithm in which a decision maker’s preferences are included in the optimization process as the reference point. The second one is a physical-programming-based MOABC algorithm in which physical programming is used for setting the region of interest of a decision maker. In this dissertation, the four developed algorithms are applied to solve digital filter design problems. The ABC-AMR algorithm is used to design Types 3 and 4 linear phase FIR differentiators, and the results are compared to those obtained by the original ABC algorithm, three improved ABC algorithms, and the Parks-McClellan algorithm. The constrained ABC-AMR algorithm is applied to the design of sparse Type 1 linear phase FIR filters of filter orders 60, 70 and 80, and the results are compared to three state-of-the-art design methods. The reference-point-based multiobjective ABC algorithm is used to design of asymmetric lowpass, highpass, bandpass and bandstop FIR filters, and the results are compared to those obtained by the preference-based multiobjective differential evolution algorithm. The physical-programming-based multiobjective ABC algorithm is used to design IIR lowpass, highpass and bandpass filters, and the results are compared to three state-of-the-art design methods. Based on the obtained design results, the four design algorithms are shown to be competitive as compared to the state-of-the-art design methods

    Hybrid Representations for Composition Optimization and Parallelizing MOEAs

    Get PDF
    We present a hybrid EA representation suitable to optimize composition optimization problems ranging from optimizing recipes for catalytic materials to cardinality constrained portfolio selection. On several problem instances we can show that this new representation performs better than standard repair mechanisms with Lamarckism. Additionally, we investigate the a clustering based parallelization scheme for MOEAs. We prove that typical "divide and conquer\u27\u27 approaches are not suitable for the standard test functions like ZDT 1-6. Therefore, we suggest a new test function based on the portfolio selection problem and prove the feasibility of "divide and conquer\u27\u27 approaches on this test function
    corecore