4,183 research outputs found

    Local wavelet features for statistical object classification and localisation

    Get PDF
    This article presents a system for texture-based probabilistic classification and localisation of 3D objects in 2D digital images and discusses selected applications. The objects are described by local feature vectors computed using the wavelet transform. In the training phase, object features are statistically modelled as normal density functions. In the recognition phase, a maximisation algorithm compares the learned density functions with the feature vectors extracted from a real scene and yields the classes and poses of objects found in it. Experiments carried out on a real dataset of over 40000 images demonstrate the robustness of the system in terms of classification and localisation accuracy. Finally, two important application scenarios are discussed, namely classification of museum artefacts and classification of metallography images

    AirCode: Unobtrusive Physical Tags for Digital Fabrication

    Full text link
    We present AirCode, a technique that allows the user to tag physically fabricated objects with given information. An AirCode tag consists of a group of carefully designed air pockets placed beneath the object surface. These air pockets are easily produced during the fabrication process of the object, without any additional material or postprocessing. Meanwhile, the air pockets affect only the scattering light transport under the surface, and thus are hard to notice to our naked eyes. But, by using a computational imaging method, the tags become detectable. We present a tool that automates the design of air pockets for the user to encode information. AirCode system also allows the user to retrieve the information from captured images via a robust decoding algorithm. We demonstrate our tagging technique with applications for metadata embedding, robotic grasping, as well as conveying object affordances.Comment: ACM UIST 2017 Technical Paper

    THINK Robots

    Get PDF
    Retailers rely on Kiva Systems’ warehouse robots to deliver order-fulfillment services, but current systems are frequently interrupted and require physical barriers to ensure compliance with safety regulations since Kiva does not currently rely on the obstacle detection system to contribute to the functional safety of its overall system. After evaluating operating scenarios and detection technologies, a solution comprised of a stereo vision system to detect static objects and a radio ranging system to identify humans in the vicinity was designed, built, and verified, with the aim of reducing undue downtime and allowing humans and robots to safely interact without physical restrictions

    Learning to Transform Time Series with a Few Examples

    Get PDF
    We describe a semi-supervised regression algorithm that learns to transform one time series into another time series given examples of the transformation. This algorithm is applied to tracking, where a time series of observations from sensors is transformed to a time series describing the pose of a target. Instead of defining and implementing such transformations for each tracking task separately, our algorithm learns a memoryless transformation of time series from a few example input-output mappings. The algorithm searches for a smooth function that fits the training examples and, when applied to the input time series, produces a time series that evolves according to assumed dynamics. The learning procedure is fast and lends itself to a closed-form solution. It is closely related to nonlinear system identification and manifold learning techniques. We demonstrate our algorithm on the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. For these tasks, this algorithm requires significantly fewer examples compared to fully-supervised regression algorithms or semi-supervised learning algorithms that do not take the dynamics of the output time series into account

    Indoor Localization Solutions for a Marine Industry Augmented Reality Tool

    Get PDF
    In this report are described means for indoor localization in special, challenging circum-stances in marine industry. The work has been carried out in MARIN project, where a tool based on mobile augmented reality technologies for marine industry is developed. The tool can be used for various inspection and documentation tasks and it is aimed for improving the efficiency in design and construction work by offering the possibility to visualize the newest 3D-CAD model in real environment. Indoor localization is needed to support the system in initialization of the accurate camera pose calculation and auto-matically finding the right location in the 3D-CAD model. The suitability of each indoor localization method to the specific environment and circumstances is evaluated.Siirretty Doriast

    Enhancing the museum experience with a sustainable solution based on contextual information obtained from an on-line analysis of users’ behaviour

    Get PDF
    Human computer interaction has evolved in the last years in order to enhance users’ experiences and provide more intuitive and usable systems. A major leap through in this scenario is obtained by embedding, in the physical environment, sensors capable of detecting and processing users’ context (position, pose, gaze, ...). Feeded by the so collected information flows, user interface paradigms may shift from stereotyped gestures on physical devices, to more direct and intuitive ones that reduce the semantic gap between the action and the corresponding system reaction or even anticipate the user’s needs, thus limiting the overall learning effort and increasing user satisfaction. In order to make this process effective, the context of the user (i.e. where s/he is, what is s/he doing, who s/he is, what are her/his preferences and also actual perception and needs) must be properly understood. While collecting data on some aspects can be easy, interpreting them all in a meaningful way in order to improve the overall user experience is much harder. This is more evident when we consider informal learning environments like museums, i.e. places that are designed to elicit visitor response towards the artifacts on display and the cultural themes proposed. In such a situation, in fact, the system should adapt to the attention paid by the user choosing the appropriate content for the user’s purposes, presenting an intuitive interface to navigate it. My research goal is focused on collecting, in a simple,unobtrusive, and sustainable way, contextual information about the visitors with the purpose of creating more engaging and personalized experiences

    Tecnología para Tiendas Inteligentes

    Get PDF
    Trabajo de Fin de Grado en Doble Grado en Ingeniería Informática y Matemáticas, Facultad de Informática UCM, Departamento de Ingeniería del Software e Inteligencia Artificial, Curso 2020/2021Smart stores technologies exemplify how Artificial Intelligence and Internet of Things can effectively join forces to shape the future of retailing. With an increasing number of companies proposing and implementing their own smart store concepts, such as Amazon Go or Tao Cafe, a new field is clearly emerging. Since the technologies used to build their infrastructure offer significant competitive advantages, companies are not publicly sharing their own designs. For this reason, this work presents a new smart store model named Mercury, which aims to take the edge off of the lack of public and accessible information and research documents in this field. We do not only introduce a comprehensive smart store model, but also work-through a feasible detailed implementation so that anyone can build their own system upon it.Las tecnologías utilizadas en las tiendas inteligentes ejemplifican cómo la Inteligencia Artificial y el Internet de las Cosas pueden unir, de manera efectiva, fuerzas para transformar el futuro de la venta al por menor. Con un creciente número de empresas proponiendo e implementando sus propios conceptos de tiendas inteligentes, como Amazon Go o Tao Cafe, un nuevo campo está claramente emergiendo. Debido a que las tecnologías utilizadas para construir sus infraestructuras ofrecen una importante ventaja competitiva, las empresas no están compartiendo públicamente sus diseños. Por esta razón, este trabajo presenta un nuevo modelo de tienda inteligente llamado Mercury, que tiene como objetivo mitigar la falta de información pública y accesible en este campo. No solo introduciremos un modelo general y completo de tienda inteligente, sino que también proponemos una implementación detallada y concreta para que cualquier persona pueda construir su propia tienda inteligente siguiendo nuestro modelo.Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu
    corecore