1,958 research outputs found

    An enumeration of equilateral triangle dissections

    Full text link
    We enumerate all dissections of an equilateral triangle into smaller equilateral triangles up to size 20, where each triangle has integer side lengths. A perfect dissection has no two triangles of the same side, counting up- and down-oriented triangles as different. We computationally prove W. T. Tutte's conjecture that the smallest perfect dissection has size 15 and we find all perfect dissections up to size 20.Comment: Final version sent to journal

    Multi-latin squares

    Get PDF
    A multi-latin square of order nn and index kk is an n×nn\times n array of multisets, each of cardinality kk, such that each symbol from a fixed set of size nn occurs kk times in each row and kk times in each column. A multi-latin square of index kk is also referred to as a kk-latin square. A 11-latin square is equivalent to a latin square, so a multi-latin square can be thought of as a generalization of a latin square. In this note we show that any partially filled-in kk-latin square of order mm embeds in a kk-latin square of order nn, for each n2mn\geq 2m, thus generalizing Evans' Theorem. Exploiting this result, we show that there exist non-separable kk-latin squares of order nn for each nk+2n\geq k+2. We also show that for each n1n\geq 1, there exists some finite value g(n)g(n) such that for all kg(n)k\geq g(n), every kk-latin square of order nn is separable. We discuss the connection between kk-latin squares and related combinatorial objects such as orthogonal arrays, latin parallelepipeds, semi-latin squares and kk-latin trades. We also enumerate and classify kk-latin squares of small orders.Comment: Final version as sent to journa

    Switching codes and designs

    Get PDF
    AbstractVarious local transformations of combinatorial structures (codes, designs, and related structures) that leave the basic parameters unaltered are here unified under the principle of switching. The purpose of the study is threefold: presentation of the switching principle, unification of earlier results (including a new result for covering codes), and applying switching exhaustively to some common structures with small parameters

    Latin Squares and Related Structures

    Get PDF
    corecore