67,620 research outputs found

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems

    An Efficient Polyphase Filter Based Resampling Method for Unifying the PRFs in SAR Data

    Full text link
    Variable and higher pulse repetition frequencies (PRFs) are increasingly being used to meet the stricter requirements and complexities of current airborne and spaceborne synthetic aperture radar (SAR) systems associated with higher resolution and wider area products. POLYPHASE, the proposed resampling scheme, downsamples and unifies variable PRFs within a single look complex (SLC) SAR acquisition and across a repeat pass sequence of acquisitions down to an effective lower PRF. A sparsity condition of the received SAR data ensures that the uniformly resampled data approximates the spectral properties of a decimated densely sampled version of the received SAR data. While experiments conducted with both synthetically generated and real airborne SAR data show that POLYPHASE retains comparable performance to the state-of-the-art BLUI scheme in image quality, a polyphase filter-based implementation of POLYPHASE offers significant computational savings for arbitrary (not necessarily periodic) input PRF variations, thus allowing fully on-board, in-place, and real-time implementation

    Discriminative Scale Space Tracking

    Full text link
    Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach. Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our approach achieves a gain of 2.5% in average overlap precision on the OTB dataset. Additionally, our method is computationally efficient, operating at a 50% higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.Comment: To appear in TPAMI. This is the journal extension of the VOT2014-winning DSST tracking metho

    Stochastic partial differential equation based modelling of large space-time data sets

    Full text link
    Increasingly larger data sets of processes in space and time ask for statistical models and methods that can cope with such data. We show that the solution of a stochastic advection-diffusion partial differential equation provides a flexible model class for spatio-temporal processes which is computationally feasible also for large data sets. The Gaussian process defined through the stochastic partial differential equation has in general a nonseparable covariance structure. Furthermore, its parameters can be physically interpreted as explicitly modeling phenomena such as transport and diffusion that occur in many natural processes in diverse fields ranging from environmental sciences to ecology. In order to obtain computationally efficient statistical algorithms we use spectral methods to solve the stochastic partial differential equation. This has the advantage that approximation errors do not accumulate over time, and that in the spectral space the computational cost grows linearly with the dimension, the total computational costs of Bayesian or frequentist inference being dominated by the fast Fourier transform. The proposed model is applied to postprocessing of precipitation forecasts from a numerical weather prediction model for northern Switzerland. In contrast to the raw forecasts from the numerical model, the postprocessed forecasts are calibrated and quantify prediction uncertainty. Moreover, they outperform the raw forecasts, in the sense that they have a lower mean absolute error

    BLADE: Filter Learning for General Purpose Computational Photography

    Full text link
    The Rapid and Accurate Image Super Resolution (RAISR) method of Romano, Isidoro, and Milanfar is a computationally efficient image upscaling method using a trained set of filters. We describe a generalization of RAISR, which we name Best Linear Adaptive Enhancement (BLADE). This approach is a trainable edge-adaptive filtering framework that is general, simple, computationally efficient, and useful for a wide range of problems in computational photography. We show applications to operations which may appear in a camera pipeline including denoising, demosaicing, and stylization
    • …
    corecore