919 research outputs found

    A maximal covering location problem based optimization of complex processes : a novel computational approach

    Get PDF
    Esta tesis basada en artículos analiza un nuevo enfoque computacional para el problema de localización de cobertura máxima (MCLP, sigla en inglés). Consideramos una formulación de tipo difuso del MCLP genérico y desarrollamos los aspectos teóricos y numéricos necesarios del Método de Separación (SM) propuesto. Una estructura específica del MCLP originalmente dado hace posible reducirlo a dos problemas auxiliares de tipo mochila (Knapsack). La separación equivalente que proponemos reduce esencialmente la complejidad de los algoritmos resultantes. Este algoritmo también incorpora una técnica de relajación convencional y el método de escalarización aplicado a un problema auxiliar de optimización multiobjetivo. La metodología de solución propuesta se aplica a continuación a la optimización de la cadena de suministro en presencia de información incompleta. Estudiamos dos ejemplos ilustrativos y realizamos un análisis riguroso de los resultados obtenidos.This Ph.D. article-based thesis discusses a novel computational approach to the extended Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of the generic MCLP and develop the necessary theoretical and numerical aspects of the proposed Separation Method (SM). A speci_c structure of the originally given MCLP makes it possible to reduce it to two auxiliary Knapsack-type problems. The equivalent separation we propose reduces essentially the complexity of the resulting computational algorithms. This algorithm also incorporates a conventional relaxation technique and the scalarizing method applied to an auxiliary multiobjective optimization problem. The proposed solution methodology is next applied to Supply Chain optimization in the presence of incomplete information. We study two illustrative examples and give a rigorous analysis of the obtained results.Doctor en Modelación y Computación CientíficaDoctorad

    Reformulation and decomposition of integer programs

    Get PDF
    In this survey we examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-bound based algorithm. First we cover in detail reformulations based on decomposition, such as Lagrangean relaxation, Dantzig-Wolfe column generation and the resulting branch-and-price algorithms. This is followed by an examination of Benders’ type algorithms based on projection. Finally we discuss in detail extended formulations involving additional variables that are based on problem structure. These can often be used to provide strengthened a priori formulations. Reformulations obtained by adding cutting planes in the original variables are not treated here.Integer program, Lagrangean relaxation, column generation, branch-and-price, extended formulation, Benders' algorithm

    A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs

    Full text link
    This work deals with a class of problems under interval data uncertainty, namely interval robust-hard problems, composed of interval data min-max regret generalizations of classical NP-hard combinatorial problems modeled as 0-1 integer linear programming problems. These problems are more challenging than other interval data min-max regret problems, as solely computing the cost of any feasible solution requires solving an instance of an NP-hard problem. The state-of-the-art exact algorithms in the literature are based on the generation of a possibly exponential number of cuts. As each cut separation involves the resolution of an NP-hard classical optimization problem, the size of the instances that can be solved efficiently is relatively small. To smooth this issue, we present a modeling technique for interval robust-hard problems in the context of a heuristic framework. The heuristic obtains feasible solutions by exploring dual information of a linearly relaxed model associated with the classical optimization problem counterpart. Computational experiments for interval data min-max regret versions of the restricted shortest path problem and the set covering problem show that our heuristic is able to find optimal or near-optimal solutions and also improves the primal bounds obtained by a state-of-the-art exact algorithm and a 2-approximation procedure for interval data min-max regret problems

    The bi-objective travelling salesman problem with profits and its connection to computer networks.

    Get PDF
    This is an interdisciplinary work in Computer Science and Operational Research. As it is well known, these two very important research fields are strictly connected. Among other aspects, one of the main areas where this interplay is strongly evident is Networking. As far as most recent decades have seen a constant growing of every kind of network computer connections, the need for advanced algorithms that help in optimizing the network performances became extremely relevant. Classical Optimization-based approaches have been deeply studied and applied since long time. However, the technology evolution asks for more flexible and advanced algorithmic approaches to model increasingly complex network configurations. In this thesis we study an extension of the well known Traveling Salesman Problem (TSP): the Traveling Salesman Problem with Profits (TSPP). In this generalization, a profit is associated with each vertex and it is not necessary to visit all vertices. The goal is to determine a route through a subset of nodes that simultaneously minimizes the travel cost and maximizes the collected profit. The TSPP models the problem of sending a piece of information through a network where, in addition to the sending costs, it is also important to consider what “profit” this information can get during its routing. Because of its formulation, the right way to tackled the TSPP is by Multiobjective Optimization algorithms. Within this context, the aim of this work is to study new ways to solve the problem in both the exact and the approximated settings, giving all feasible instruments that can help to solve it, and to provide experimental insights into feasible networking instances

    Optimisation of an integrated transport and distribution system

    Get PDF
    Imperial Users onl
    corecore