3,539 research outputs found

    Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels

    Get PDF
    The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the Ξ²1-Ξ²2 loop or through pre-TM1. The Ξ²1-Ξ²2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs. Β© 2013 Mowrey et al

    A Hydrophobic Gate in an Ion Channel: The Closed State of the Nicotinic Acetylcholine Receptor

    Full text link
    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the `Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid, and serotonin. Cryo-electron microscopy has yielded a three dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height ca. 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A radius hydrophobic pore can form a functional barrier to the permeation of a 1 A radius Na+ ion. Using a united atom force field for the protein instead of an all atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.Comment: Accepted by Physical Biology; includes a supplement and a supplementary mpeg movie can be found at http://sbcb.bioch.ox.ac.uk/oliver/download/Movies/watergate.mp

    Rampant exchange of the structure and function of extramembrane domains between membrane and water soluble proteins.

    Get PDF
    Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp

    A Cation-Ο€ Interaction in the Binding Site of the Glycine Receptor Is Mediated by a Phenylalanine Residue

    Get PDF
    Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-{pi} interaction with the agonist, whereas in GABAA receptors, a Tyr performs this role. The glycine receptor binding site, however, contains predominantly Phe residues. Homology models suggest that two of these Phe side chains, Phe159 and Phe207, and possibly a third, Phe63, are positioned such that they could contribute to a cation-{pi} interaction with the primary amine of glycine. Here, we test this hypothesis by incorporation of a series of fluorinated Phe derivatives using unnatural amino acid mutagenesis. The data reveal a clear correlation between the glycine EC50 value and the cation-{pi} binding ability of the fluorinated Phe derivatives at position 159, but not at positions 207 or 63, indicating a single cation-{pi} interaction between glycine and Phe159. The data thus provide an anchor point for locating glycine in its binding site, and demonstrate for the first time a cation-{pi} interaction between Phe and a neurotransmitter

    Direct binding of phosphatidylglycerol at specific sites modulates desensitization of a ligand-gated ion channel

    Get PDF
    Pentameric ligand-gated ion channels (pLGICs) are essential determinants of synaptic transmission, and are modulated by specific lipids including anionic phospholipids. The exact modulatory effect of anionic phospholipids in pLGICs and the mechanism of this effect are not well understood. Using native mass spectrometry, coarse-grained molecular dynamics simulations and functional assays, we show that the anionic phospholipid, 1-palmitoyl-2-oleoyl phosphatidylglycerol (POPG), preferentially binds to and stabilizes the pLGIC, Erwinia ligand-gated ion channel (ELIC), and decreases ELIC desensitization. Mutations of five arginines located in the interfacial regions of the transmembrane domain (TMD) reduce POPG binding, and a subset of these mutations increase ELIC desensitization. In contrast, a mutation that decreases ELIC desensitization, increases POPG binding. The results support a mechanism by which POPG stabilizes the open state of ELIC relative to the desensitized state by direct binding at specific sites

    Identification of a Negative Allosteric Site on Human Ξ±4Ξ²2 and Ξ±3Ξ²4 Neuronal Nicotinic Acetylcholine Receptors

    Get PDF
    Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human Ξ±4Ξ²2 and Ξ±3Ξ²4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the Ξ²2 subunit were independently mutated to the corresponding residues found on the Ξ²4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human Ξ±4Ξ²2 over Ξ±3Ξ²4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 Β΅M. These results demonstrate the selectivity of KAB-18 for human Ξ±4Ξ²2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and disorders

    Targeted Molecular Dynamics Study of C-Loop Closure and Channel Gating in Nicotinic Receptors

    Get PDF
    The initial coupling between ligand binding and channel gating in the human Ξ±7 nicotinic acetylcholine receptor (nAChR) has been investigated with targeted molecular dynamics (TMD) simulation. During the simulation, eight residues at the tip of the C-loop in two alternating subunits were forced to move toward a ligand-bound conformation as captured in the crystallographic structure of acetylcholine binding protein (AChBP) in complex with carbamoylcholine. Comparison of apo- and ligand-bound AChBP structures shows only minor rearrangements distal from the ligand-binding site. In contrast, comparison of apo and TMD simulation structures of the nAChR reveals significant changes toward the bottom of the ligand-binding domain. These structural rearrangements are subsequently translated to the pore domain, leading to a partly open channel within 4 ns of TMD simulation. Furthermore, we confirmed that two highly conserved residue pairs, one located near the ligand-binding pocket (Lys145 and Tyr188), and the other located toward the bottom of the ligand-binding domain (Arg206 and Glu45), are likely to play important roles in coupling agonist binding to channel gating. Overall, our simulations suggest that gating movements of the Ξ±7 receptor may involve relatively small structural changes within the ligand-binding domain, implying that the gating transition is energy-efficient and can be easily modulated by agonist binding/unbinding

    Two Amino Acid Residues Contribute to a Cation-Ο€ Binding Interaction in the Binding Site of an Insect GABA Receptor

    Get PDF
    Cys-loop receptor binding sites characteristically possess an "aromatic box," where several aromatic amino acid residues surround the bound ligand. A cation-Ο€ interaction between one of these residues and the natural agonist is common, although the residue type and location are not conserved. Even in the closely related vertebrate GABA_A and GABA_C receptors, residues in distinct locations perform this role: in GABA_A receptors, a Tyr residue in loop A forms a cation-Ο€ interaction with GABA, while in GABA_C receptors it is a loop B residue. GABA-activated Cys-loop receptors also exist in invertebrates, where they have distinct pharmacologies and are the target of a range of pesticides. Here we examine the location of GABA in an insect binding site by incorporating a series of fluorinated Phe derivatives into the receptor binding pocket using unnatural amino acid mutagenesis, and evaluating the resulting receptors when expressed in Xenopus oocytes. A homology model suggests that two aromatic residues (in loops B and C) are positioned such that they could contribute to a cation-Ο€ interaction with the primary ammonium of GABA, and the data reveal a clear correlation between the GABA EC_(50) and the cation-Ο€ binding ability both at Phe206 (loop B) and Tyr254 (loop C), demonstrating for the first time the contribution of two aromatic residues to a cation-Ο€ interaction in a Cys-loop receptor

    Blockade of Neuronal Ξ±7-nAChR by Ξ±-Conotoxin ImI Explained by Computational Scanning and Energy Calculations

    Get PDF
    Ξ±-Conotoxins potently inhibit isoforms of nicotinic acetylcholine receptors (nAChRs), which are essential for neuronal and neuromuscular transmission. They are also used as neurochemical tools to study nAChR physiology and are being evaluated as drug leads to treat various neuronal disorders. A number of experimental studies have been performed to investigate the structure-activity relationships of conotoxin/nAChR complexes. However, the structural determinants of their binding interactions are still ambiguous in the absence of experimental structures of conotoxin-receptor complexes. In this study, the binding modes of Ξ±-conotoxin ImI to the Ξ±7-nAChR, currently the best-studied system experimentally, were investigated using comparative modeling and molecular dynamics simulations. The structures of more than 30 single point mutants of either the conotoxin or the receptor were modeled and analyzed. The models were used to explain qualitatively the change of affinities measured experimentally, including some nAChR positions located outside the binding site. Mutational energies were calculated using different methods that combine a conformational refinement procedure (minimization with a distance dependent dielectric constant or explicit water, or molecular dynamics using five restraint strategies) and a binding energy function (MM-GB/SA or MM-PB/SA). The protocol using explicit water energy minimization and MM-GB/SA gave the best correlations with experimental binding affinities, with an R2 value of 0.74. The van der Waals and non-polar desolvation components were found to be the main driving force for binding of the conotoxin to the nAChR. The electrostatic component was responsible for the selectivity of the various ImI mutants. Overall, this study provides novel insights into the binding mechanism of Ξ±-conotoxins to nAChRs and the methodological developments reported here open avenues for computational scanning studies of a rapidly expanding range of wild-type and chemically modified Ξ±-conotoxins
    • …
    corecore