3,819 research outputs found

    Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence

    Get PDF
    No abstract availabl

    Articulating: the neural mechanisms of speech production

    Full text link
    Speech production is a highly complex sensorimotor task involving tightly coordinated processing across large expanses of the cerebral cortex. Historically, the study of the neural underpinnings of speech suffered from the lack of an animal model. The development of non-invasive structural and functional neuroimaging techniques in the late 20th century has dramatically improved our understanding of the speech network. Techniques for measuring regional cerebral blood flow have illuminated the neural regions involved in various aspects of speech, including feedforward and feedback control mechanisms. In parallel, we have designed, experimentally tested, and refined a neural network model detailing the neural computations performed by specific neuroanatomical regions during speech. Computer simulations of the model account for a wide range of experimental findings, including data on articulatory kinematics and brain activity during normal and perturbed speech. Furthermore, the model is being used to investigate a wide range of communication disorders.R01 DC002852 - NIDCD NIH HHS; R01 DC007683 - NIDCD NIH HHS; R01 DC016270 - NIDCD NIH HHSAccepted manuscrip

    Conflict monitoring in speech processing: an fMRI study of error detection in speech production and perception

    Get PDF
    To minimize the number of errors in speech, and thereby facilitate communication, speech is monitored before articulation. It is, however, unclear at which level during speech production monitoring takes place, and what mechanisms are used to detect and correct errors. The present study investigated whether internal verbal monitoring takes place through the speech perception system, as proposed by perception-based theories of speech monitoring, or whether mechanisms independent of perception are applied, as proposed by production-based theories of speech monitoring. With the use of fMRI during a tongue twister task we observed that error detection in internal speech during noise-masked overt speech production and error detection in speech perception both recruit the same neural network, which includes pre-supplementary motor area (pre-SMA), dorsal anterior cingulate cortex (dACC), anterior insula (AI), and inferior frontal gyrus (IFG). Although production and perception recruit similar areas, as proposed by perception-based accounts, we did not find activation in superior temporal areas (which are typically associated with speech perception) during internal speech monitoring in speech production as hypothesized by these accounts. On the contrary, results are highly compatible with a domain general approach to speech monitoring, by which internal speech monitoring takes place through detection of conflict between response options, which is subsequently resolved by a domain general executive center (e.g., the ACC)

    A Scalable Model of Cerebellar Adaptive Timing and Sequencing: The Recurrent Slide and Latch (RSL) Model

    Full text link
    From the dawn of modern neural network theory, the mammalian cerebellum has been a favored object of mathematical modeling studies. Early studies focused on the fan-out, convergence, thresholding, and learned weighting of perceptual-motor signals within the cerebellar cortex. This led in the proposals of Albus (1971; 1975) and Marr (1969) to the still viable idea that the granule cell stage in the cerebellar cortex performs a sparse expansive recoding of the time-varying input vector. This recoding reveals and emphasizes combinations (of input state variables) in a distributed representation that serves as a basis for the learned, state-dependent control actions engendered by cerebellar outputs to movement related centers. Although well-grounded as such, this perspective seriously underestimates the intelligence of the cerebellar cortex. Context and state information arises asynchronously due to the heterogeneity of sources that contribute signals to compose the cerebellar input vector. These sources include radically different sensory systems - vision, kinesthesia, touch, balance and audition - as well as many stages of the motor output channel. To make optimal use of available signals, the cerebellum must be able to sift the evolving state representation for the most reliable predictors of the need for control actions, and to use those predictors even if they appear only transiently and well in advance of the optimal time for initiating the control action. Such a cerebellar adaptive timing competence has recently been experimentally verified (Perrett, Ruiz, & Mauk, 1993). This paper proposes a modification to prior, population, models for cerebellar adaptive timing and sequencing. Since it replaces a population with a single clement, the proposed Recurrent Slide and Latch (RSL) model is in one sense maximally efficient, and therefore optimal from the perspective of scalability.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-92-J-1309, N00014-93-1-1364, N00014-95-1-0409)

    Cortical Models for Movement Control

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N0014-95-l-0409)

    Computational roles of cortico-cerebellar loops in temporal credit assignment

    Get PDF
    Animal survival depends on behavioural adaptation to the environment. This is thought to be enabled by plasticity in the neural circuit. However, the laws which govern neural plasticity are unclear. From a functional aspect, it is desirable to correctly identify, or assign “credit” for, the neurons or synapses responsible for the task decision and subsequent performance. In the biological circuit, the intricate, non-linear interactions involved in neural networks makes appropriately assigning credit to neurons highly challenging. In the temporal domain, this is known as the temporal credit assignment (TCA) problem. This Thesis considers the role the cerebellum – a powerful subcortical structure with strong error-guided plasticity rules – as a solution to TCA in the brain. In particular, I use artificial neural networks as a means to model and understand the mechanisms by which the cerebellum can support learning in the neocortex via the cortico-cerebellar loop. I introduce two distinct but compatible computational models of cortico-cerebellar interaction. The first model asserts that the cerebellum provides the neocortex predictive feedback, modeled in the form of error gradients, with respect to its current activity. This predictive feedback enables better credit assignment in the neocortex and effectively removes the lock between feedforward and feedback processing in cortical networks. This model captures observed long-term deficits associated with cerebellar dysfunction, namely cerebellar dysmetria, in both the motor and non-motor domain. Predictions are also made with respect to alignment of cortico-cerebellar activity during learning and the optimal task conditions for cerebellar contribution. The second model also looks at the role of the cerebellum in learning, but now considers its ability to instantaneously drive the cortex towards desired task dynamics. Unlike the first model, this model does not assume any local cortical plasticity need take place at all and task-directed learning can effectively be outsourced to the cerebellum. This model captures recent optogenetic studies in mice which show the cerebellum as a necessary component for the maintenance of desired cortical dynamics and ensuing behaviour. I also show that this driving input can eventually be used as a teaching signal for the cortical circuit, thereby conceptually unifying the two models. Overall, this Thesis explores the computational role of the cerebellum and cortico-cerebellar loops for task acquisition and maintenance in the brain
    • …
    corecore