1,022 research outputs found

    Spherical collapse of supermassive stars: neutrino emission and gamma-ray bursts

    Get PDF
    We present the results of numerical simulations of the spherically symmetric gravitational collapse of supermassive stars (SMS). The collapse is studied using a general relativistic hydrodynamics code. The coupled system of Einstein and fluid equations is solved employing observer time coordinates, by foliating the spacetime by means of outgoing null hypersurfaces. The code contains an equation of state which includes effects due to radiation, electrons and baryons, and detailed microphysics to account for electron-positron pairs. In addition energy losses by thermal neutrino emission are included. We are able to follow the collapse of SMS from the onset of instability up to the point of black hole formation. Several SMS with masses in the range 5×105M109M5\times 10^5 M_{\odot}- 10^9 M_{\odot} are simulated. In all models an apparent horizon forms initially, enclosing the innermost 25% of the stellar mass. From the computed neutrino luminosities, estimates of the energy deposition by ννˉ\nu\bar{\nu}-annihilation are obtained. Only a small fraction of this energy is deposited near the surface of the star, where, as proposed recently by Fuller & Shi (1998), it could cause the ultrarelativistic flow believed to be responsible for γ\gamma-ray bursts. Our simulations show that for collapsing SMS with masses larger than 5×105M5\times 10^5 M_{\odot} the energy deposition is at least two orders of magnitude too small to explain the energetics of observed long-duration bursts at cosmological redshifts. In addition, in the absence of rotational effects the energy is deposited in a region containing most of the stellar mass. Therefore relativistic ejection of matter is impossible.Comment: 13 pages, 11 figures, submitted to A&

    Computing Periods of Hypersurfaces

    Full text link
    We give an algorithm to compute the periods of smooth projective hypersurfaces of any dimension. This is an improvement over existing algorithms which could only compute the periods of plane curves. Our algorithm reduces the evaluation of period integrals to an initial value problem for ordinary differential equations of Picard-Fuchs type. In this way, the periods can be computed to extreme-precision in order to study their arithmetic properties. The initial conditions are obtained by an exact determination of the cohomology pairing on Fermat hypersurfaces with respect to a natural basis.Comment: 33 pages; Final version. Fixed typos, minor expository changes. Changed code repository lin

    Introduction to Arithmetic Mirror Symmetry

    Full text link
    We describe how to find period integrals and Picard-Fuchs differential equations for certain one-parameter families of Calabi-Yau manifolds. These families can be seen as varieties over a finite field, in which case we show in an explicit example that the number of points of a generic element can be given in terms of p-adic period integrals. We also discuss several approaches to finding zeta functions of mirror manifolds and their factorizations. These notes are based on lectures given at the Fields Institute during the thematic program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics

    Rigid continuation paths I. Quasilinear average complexity for solving polynomial systems

    Get PDF
    How many operations do we need on the average to compute an approximate root of a random Gaussian polynomial system? Beyond Smale's 17th problem that asked whether a polynomial bound is possible, we prove a quasi-optimal bound (input size)1+o(1)\text{(input size)}^{1+o(1)}. This improves upon the previously known (input size)32+o(1)\text{(input size)}^{\frac32 +o(1)} bound. The new algorithm relies on numerical continuation along \emph{rigid continuation paths}. The central idea is to consider rigid motions of the equations rather than line segments in the linear space of all polynomial systems. This leads to a better average condition number and allows for bigger steps. We show that on the average, we can compute one approximate root of a random Gaussian polynomial system of~nn equations of degree at most DD in n+1n+1 homogeneous variables with O(n5D2)O(n^5 D^2) continuation steps. This is a decisive improvement over previous bounds that prove no better than 2min(n,D)\sqrt{2}^{\min(n, D)} continuation steps on the average

    The status of numerical relativity

    Full text link
    Numerical relativity has come a long way in the last three decades and is now reaching a state of maturity. We are gaining a deeper understanding of the fundamental theoretical issues related to the field, from the well posedness of the Cauchy problem, to better gauge conditions, improved boundary treatment, and more realistic initial data. There has also been important work both in numerical methods and software engineering. All these developments have come together to allow the construction of several advanced fully three-dimensional codes capable of dealing with both matter and black holes. In this manuscript I make a brief review the current status of the field.Comment: Report on plenary talk at the 17th International Conference on General Relativity and Gravitation (GR17), held at Dublin, Ireland, july 2004. Latex, 20 pages, 5 figure

    Local characteristic algorithms for relativistic hydrodynamics

    Get PDF
    Numerical schemes for the general relativistic hydrodynamic equations are discussed. The use of conservative algorithms based upon the characteristic structure of those equations, developed during the last decade building on ideas first applied in Newtonian hydrodynamics, provides a robust methodology to obtain stable and accurate solutions even in the presence of discontinuities. The knowledge of the wave structure of the above system is essential in the construction of the so-called linearized Riemann solvers, a class of numerical schemes specifically designed to solve nonlinear hyperbolic systems of conservation laws. In the last part of the review some astrophysical applications of such schemes, using the coupled system of the (characteristic) Einstein and hydrodynamic equations, are also briefly presented.Comment: 20 pages, 4 figures, To appear in the proceedings of the workshop "The conformal structure of space-time", J. Frauendiener, H. Friedrich, eds, Springer Lecture Notes in Physic

    Simulating binary neutron stars: dynamics and gravitational waves

    Full text link
    We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which compare very well to results from perturbation theory. The Einstein equations are solved in a first order reduction of the generalized harmonic formulation, and the fluid equations are solved using a modified convex essentially non-oscillatory method. All calculations are done in three spatial dimensions without symmetry assumptions. We use the \had computational infrastructure for distributed adaptive mesh refinement.Comment: 14 pages, 16 figures. Added one figure from previous version; corrected typo

    The Refined Swampland Distance Conjecture in Calabi-Yau Moduli Spaces

    Full text link
    The Swampland Distance Conjecture claims that effective theories derived from a consistent theory of quantum gravity only have a finite range of validity. This will imply drastic consequences for string theory model building. The refined version of this conjecture says that this range is of the order of the naturally built in scale, namely the Planck scale. It is investigated whether the Refined Swampland Distance Conjecture is consistent with proper field distances arising in the well understood moduli spaces of Calabi-Yau compactification. Investigating in particular the non-geometric phases of Kahler moduli spaces of dimension h11{1,2,101}h^{11}\in\{1,2,101\}, we always found proper field distances that are smaller than the Planck-length.Comment: 71 pages, 11 figures, v2: refs added, typos correcte

    Reconstructing GKZ via topological recursion

    Full text link
    In this article, a novel description of the hypergeometric differential equation found from Gel'fand-Kapranov-Zelevinsky's system (referred to GKZ equation) for Givental's JJ-function in the Gromov-Witten theory will be proposed. The GKZ equation involves a parameter \hbar, and we will reconstruct it as the WKB expansion from the classical limit 0\hbar\to 0 via the topological recursion. In this analysis, the spectral curve (referred to GKZ curve) plays a central role, and it can be defined as the critical point set of the mirror Landau-Ginzburg potential. Our novel description is derived via the duality relations of the string theories, and various physical interpretations suggest that the GKZ equation is identified with the quantum curve for the brane partition function in the cohomological limit. As an application of our novel picture for the GKZ equation, we will discuss the Stokes matrix for the equivariant CP1\mathbb{C}\textbf{P}^{1} model and the wall-crossing formula for the total Stokes matrix will be examined. And as a byproduct of this analysis we will study Dubrovin's conjecture for this equivariant model.Comment: 66 pages, 13 figures, 6 tables; v2: new subsections added, minor revisions, typos corrected; v3: minor revisions, typos correcte

    Formulations of the 3+1 evolution equations in curvilinear coordinates

    Full text link
    Following Brown, in this paper we give an overview of how to modify standard hyperbolic formulations of the 3+1 evolution equations of General Relativity in such a way that all auxiliary quantities are true tensors, thus allowing for these formulations to be used with curvilinear sets of coordinates such as spherical or cylindrical coordinates. After considering the general case for both the Nagy-Ortiz-Reula (NOR) and the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulations, we specialize to the case of spherical symmetry and also discuss the issue of regularity at the origin. Finally, we show some numerical examples of the modified BSSN formulation at work in spherical symmetry.Comment: 19 pages, 12 figure
    corecore