11,502 research outputs found

    Rock falls impacting railway tracks. Detection analysis through an artificial intelligence camera prototype

    Get PDF
    During the last few years, several approaches have been proposed to improve early warning systems for managing geological risk due to landslides, where important infrastructures (such as railways, highways, pipelines, and aqueducts) are exposed elements. In this regard, an Artificial intelligence Camera Prototype (AiCP) for real-time monitoring has been integrated in a multisensor monitoring system devoted to rock fall detection. An abandoned limestone quarry was chosen at Acuto (central Italy) as test-site for verifying the reliability of the integratedmonitoring system. A portion of jointed rockmass, with dimensions suitable for optical monitoring, was instrumented by extensometers. One meter of railway track was used as a target for fallen blocks and a weather station was installed nearby. Main goals of the test were (i) evaluating the reliability of the AiCP and (ii) detecting rock blocks that reach the railway track by the AiCP. At this aim, several experiments were carried out by throwing rock blocks over the railway track. During these experiments, the AiCP detected the blocks and automatically transmitted an alarm signal

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    An improved optimization technique for estimation of solar photovoltaic parameters

    Get PDF
    The nonlinear current vs voltage (I-V) characteristics of solar PV make its modelling difficult. Optimization techniques are the best tool for identifying the parameters of nonlinear models. Even though, there are different optimization techniques used for parameter estimation of solar PV, still the best optimized results are not achieved to date. In this paper, Wind Driven Optimization (WDO) technique is proposed as the new method for identifying the parameters of solar PV. The accuracy and convergence time of the proposed method is compared with results of Pattern Search (PS), Genetic Algorithm (GA), and Simulated Annealing (SA) for single diode and double diode models of solar PV. Furthermore, for performance validation, the parameters obtained through WDO are compared with hybrid Bee Pollinator Flower Pollination Algorithm (BPFPA), Flower Pollination Algorithm (FPA), Generalized Oppositional Teaching Learning Based Optimization (GOTLBO), Artificial Bee Swarm Optimization (ABSO), and Harmony Search (HS). The obtained results clearly reveal that WDO algorithm can provide accurate optimized values with less number of iterations at different environmental conditions. Therefore, the WDO can be recommended as the best optimization algorithm for parameter estimation of solar PV

    Optimal Net-Load Balancing in Smart Grids with High PV Penetration

    Full text link
    Mitigating Supply-Demand mismatch is critical for smooth power grid operation. Traditionally, load curtailment techniques such as Demand Response (DR) have been used for this purpose. However, these cannot be the only component of a net-load balancing framework for Smart Grids with high PV penetration. These grids can sometimes exhibit supply surplus causing over-voltages. Supply curtailment techniques such as Volt-Var Optimizations are complex and computationally expensive. This increases the complexity of net-load balancing systems used by the grid operator and limits their scalability. Recently new technologies have been developed that enable the rapid and selective connection of PV modules of an installation to the grid. Taking advantage of these advancements, we develop a unified optimal net-load balancing framework which performs both load and solar curtailment. We show that when the available curtailment values are discrete, this problem is NP-hard and develop bounded approximation algorithms for minimizing the curtailment cost. Our algorithms produce fast solutions, given the tight timing constraints required for grid operation. We also incorporate the notion of fairness to ensure that curtailment is evenly distributed among all the nodes. Finally, we develop an online algorithm which performs net-load balancing using only data available for the current interval. Using both theoretical analysis and practical evaluations, we show that our net-load balancing algorithms provide solutions which are close to optimal in a small amount of time.Comment: 11 pages. To be published in the 4th ACM International Conference on Systems for Energy-Efficient Built Environments (BuildSys 17) Changes from previous version: Fixed a bug in Algorithm 1 which was causing some min cost solutions to be misse
    corecore