13 research outputs found

    Size preserving mesh generation in adaptivity processes

    Get PDF
    It is well known that the variations of the element size have to be controlled in order to generate a high-quality mesh. Hence, several techniques have been developed to limit the gradient of the element size. Although these methods allow generating high-quality meshes, the obtained discretizations do not always reproduce the prescribed size function. Specifically, small elements may not be generated in a region where small element size is prescribed. This is critical for many practical simulations, where small elements are needed to reduce the error of the numerical simulation. To solve this issue, we present the novel size-preserving technique to control the mesh size function prescribed at the vertices of a background mesh. The result is a new size function that ensures a high-quality mesh with all the elements smaller or equal to the prescribed element size. That is, we ensure that the new mesh handles at least one element of the correct size at each local minima of the size function. In addition, the gradient of the size function is limited to obtain a high-quality mesh. Two direct applications are presented. First, we show that we can reduce the number of iterations to converge an adaptive process, since we do not need additional iterations to generate a valid mesh. Second, the size-preserving approach allows to generate quadri- lateral meshes that correctly preserves the prescribed element size.Peer ReviewedPostprint (published version

    Template-based geometric transformations of a functionally enriched DMU into FE assembly models

    Get PDF
    International audiencePre-processing of CAD models derived from Digital Mock-Ups (DMUs) into finite element (FE) models is usually completed after many tedious tasks of model preparation and shape transformations. It is highly valuable for simulation engineers to automate time-consuming sequences of assembly preparation processes. Here, it is proposed to use an enriched DMU with geometric interfaces between components (contacts and interferences) and functional properties. Then, the key concept of template-based transformation can connect to assembly functions to locate consistent sets of components in the DMU. Subsequently, sets of shape transformations feed the template content to adapt components to FE requirements. To precisely monitor the friction areas and the mesh around bolts, the template creates sub-domains into their tightened components and preserves the consistency of geometric interfaces for the mesh generation purposes. From a user-selected assembly function, the method is able to robustly identify, locate and transform groups of components while preserving the consistency of the assembly needed for FE models. To enlarge the scope of the template in the assembly function taxonomy, it is shown how the concept of dependent function enforces the geometric and functional consistency of the transformed assembly. To demonstrate the proposed approach, a business oriented prototype processes bolted junctions of aeronautical structures

    Adaptive meshing for finite element analysis of heterogeneous materials

    Get PDF
    postprin

    Automatic sizing functions for unstructured surface mesh generation

    Get PDF
    Accurate sizing functions are crucial for efficient generation of high-quality meshes, but to define the sizing function is often the bottleneck in complicated mesh generation tasks because of the tedious user interaction involved. We present a novel algorithm to automatically create high-quality sizing functions for surface mesh generation. First, the tessellation of a Computer Aided Design (CAD) model is taken as the background mesh, in which an initial sizing function is defined by considering geometrical factors and user-specified parameters. Then, a convex nonlinear programming problem is formulated and solved efficiently to obtain a smoothed sizing function that corresponds to a mesh satisfying necessary gradient constraint conditions and containing a significantly reduced element number. Finally, this sizing function is applied in an advancing front mesher. With the aid of a walk-through algorithm, an efficient sizing-value query scheme is developed. Meshing experiments of some very complicated geometry models are presented to demonstrate that the proposed sizing-function approach enables accurate and fully automatic surface mesh generation

    Tree-based Control Space Structures for Discrete Metric Sources in 3D Meshing

    Get PDF
    This article compares the different variations of the octree and kd-tree structures used to create a control space based on a set of discrete metric point-sources. The control space thus created supervises the generation of the mesh providing efficient access to the required information on the desired shape and size of the mesh elements at each point of the discretized domain. Structures are compared in terms of computational and memory complexity as well as regarding the accuracy of the approximation of the set of discrete metric sources in the created control space structure

    A new approach to automatic and a priori mesh adaptation around circular holes for finite element analysis

    Get PDF
    Through our research on the integration of finite element analysis in the design and manufacturing process with CAD, we have proposed the concept of mesh pre-optimization. This concept consists in converting shape and analysis information in a size map (a mesh sizing function) with respect to various adaptation criteria (refining the mesh around geometric form features, minimizing the geometric discretization error, boundary conditions, etc.). This size map then represents a constraint that has to be respected by automatic mesh generation procedures. This paper introduces a new approach to automatic mesh adaptation around circular holes. This tool aims at optimizing, before any FEA, the mesh of a CAD model around circular holes. This approach, referred to as “a priori” mesh adaptation, should not be regarded as an alternative to adaptive a posteriori mesh refinement but as an efficient way to obtain reasonably accurate FEA results before a posteriori adaptation, which is particularly interesting when evaluating design scenarios. The approach is based on performing many offline FEA analyses on a reference case and deriving, from results and error distributions obtained, a relationship between mesh size and FEA error. This relationship can then be extended to target user specified FEA accuracy objectives in a priori mesh adaptation for any distribution of circular holes. The approach being purely heuristic, fulfilling FEA accuracy objectives, in all cases, cannot be theoretically guaranteed. However, results obtained using varying hole diameters and distributions in 2D show that this heuristic approach is reliable and useful. Preliminary results also show that extension of the method can be foreseen towards a priori mesh adaptation in 3D and mesh adaptation around other types of 2D features

    6th International Meshing Roundtable '97

    Full text link

    Ingénierie systÚmes basée sur les modÚles appliquée à la gestion et l'intégration des données de conception et de simulation : application aux métiers d'intégration et de simulation de systÚmes aéronautiques complexes

    Get PDF
    The aim of this doctoral thesis is to contribute to the facilitation of design, integration and simulation activities in the aeronautics industry, but more generally in the context of collaborative complex product development. This objective is expected to be achieved through the use and improvement of digital engineering capabilities. During the last decade, the Digital Mock-Up (DMU) – supported by Product Data Management (PDM) systems – became a key federating environment to exchange/share a common 3D CAD model-based product definition between co-designers. It enables designers and downstream users(analysts) to access the geometry of the product assembly. While enhancing 3D and 2D simulations in a collaborative and distributed design process, the DMU offers new perspectives for analysts to retrieve the appropriate CAD data inputs used for Finite Element Analysis (FEA), permitting hence to speed-up the simulation preparation process. However, current industrial DMUs suffer from several limitations, such as the lack of flexibility in terms of content and structure, the lack of digital interface objects describing the relationships between its components and a lack of integration with simulation activities and data.This PhD underlines the DMU transformations required to provide adapted DMUs that can be used as direct input for large assembly FEA. These transformations must be consistent with the simulation context and objectives and lead to the concept of “Product View” applied to DMUs andto the concept of “Behavioural Mock-Up” (BMU). A product view defines the link between a product representation and the activity or process (performed by at least one stakeholder) that use or generate this representation as input or output respectively. The BMU is the equivalent of the DMU for simulation data and processes. Beyond the geometry, which is represented in the DMU,the so-called BMU should logically link all data and models that are required to simulate the physical behaviour and properties of a single component or an assembly of components. The key enabler for achieving the target of extending the concept of the established CAD-based DMU to the behavioural CAE-based BMU is to find a bi-directional interfacing concept between the BMU and its associated DMU. This the aim of the Design-Analysis System Integration Framework (DASIF) proposed in this PhD. This framework might be implemented within PLM/SLM environments and interoperate with both CAD-DMU and CAE-BMU environments. DASIF combines configuration data management capabilities of PDM systems with MBSE system modelling concepts and Simulation Data Management capabilities.This PhD has been carried out within a European research project: the CRESCENDO project, which aims at delivering the Behavioural Digital Aircraft (BDA). The BDA concept might consist in a collaborative data exchange/sharing platform for design-simulation processes and models throughout the development life cycle of aeronautics products. Within this project, the Product Integration Scenario and related methodology have been defined to handle digital integration chains and to provide a test case scenario for testing DASIF concepts. These latter have been used to specify and develop a prototype of an “Integrator Dedicated Environment” implemented in commercial PLM/SLM applications. Finally the DASIF conceptual data model has also served as input for contributing to the definition of the Behavioural Digital Aircraft Business Object Model: the standardized data model of the BDA platform enabling interoperability between heterogeneous PLM/SLM applications and to which existing local design environments and new services to be developed could plug.L’objectif de cette thĂšse est de contribuer au dĂ©veloppement d’approches mĂ©thodologiques et d’outils informatiques pour dĂ©velopper les chaĂźnes d’intĂ©gration numĂ©riques en entreprise Ă©tendue. Il s’agit notamment de mieux intĂ©grer et d’optimiser les activitĂ©s de conception, d’intĂ©gration et de simulation dans le contexte du dĂ©veloppement collaboratif des produits/systĂšmes complexes.La maquette numĂ©rique (DMU) – supportĂ©e par un systĂšme de gestion de donnĂ©es techniques (SGDT ou PDM) – est devenue ces derniĂšres annĂ©es un environnement fĂ©dĂ©rateur clĂ© pour Ă©changer et partager une dĂ©finition technique et une reprĂ©sentation 3D commune du produit entre concepteurs et partenaires. Cela permet aux concepteurs ainsi qu’aux utilisateurs en aval (ceux qui sont en charge des simulations numĂ©riques notamment) d’avoir un accĂšs Ă  la gĂ©omĂ©trie du produit virtuel assemblĂ©. Alors que les simulations numĂ©riques 3D et 2D prennent une place de plus en plus importante dans le cycle de dĂ©veloppement du produit, la DMU offre de nouvelles perspectives Ă  ces utilisateurs pour rĂ©cupĂ©rer et exploiter les donnĂ©es CAO appropriĂ©es et adaptĂ©es pour les analyses par Ă©lĂ©ments finis. Cela peut ainsi permettre d’accĂ©lĂ©rer le processus de prĂ©paration du modĂšle de simulation. Cependant, les environnements industriels de maquettes numĂ©riques sont actuellement limitĂ©s dans leur exploitation par : - un manque de flexibilitĂ© en termes de contenu et de structure, - l’absence d’artefact numĂ©rique 3D permettant de dĂ©crire les interfaces des composants de l’assemblage, - un manque d’intĂ©gration avec les donnĂ©es et activitĂ©s de simulation.Cette thĂšse met notamment l’accent sur les transformations Ă  apporter aux DMU afin qu’elles puissent ĂȘtre utilisĂ©es comme donnĂ©es d’entrĂ©e directes pour les analyses par Ă©lĂ©ments finis d’assemblages volumineux (plusieurs milliers de piĂšces). Ces transformations doivent ĂȘtre en cohĂ©rence avec le contexte et les objectifs de simulation et cela nous a amenĂ© au concept de « vue produit » appliquĂ©e aux DMUs, ainsi qu’au concept de « maquette comportementale » (BMU). Une « vue produit » dĂ©finit le lien entre une reprĂ©sentation du produit et l’activitĂ© ou le processus utilisant ou gĂ©nĂ©rant cette reprĂ©sentation. La BMU est l’équivalent de la DMU pour les donnĂ©es et les processus de simulation. Au delĂ  des gĂ©omĂ©tries discrĂ©tisĂ©es, la dĂ©nommĂ©e BMU devrait, en principe, lier toutes les donnĂ©es et les modĂšles qui seront nĂ©cessaires pour simuler le comportement d’un ou plusieurs composants. L’élĂ©ment clĂ© pour atteindre l’objectif d’élargir le concept Ă©tabli de la DMU (basĂ©e sur des modĂšles CAO) Ă  celui de la BMU (basĂ©e sur des modĂšles CAE), est de trouver un concept d’interface bidirectionnel entre la BMU et sa DMU associĂ©e. C’est l’objectif du « Design-Analysis System Integration Framework » (DASIF) proposĂ© dans cette thĂšse de doctorat. Ce cadre a vise Ă  ĂȘtre implĂ©mentĂ© au sein d’environnements PLM/SLM et doit pouvoir inter-opĂ©rer Ă  la fois avec les environnements CAD-DMU et CAE-BMU. DASIF allie les fonctionnalitĂ©s de gestion de donnĂ©es et de configuration des systĂšmes PDM avec les concepts et formalismes d’ingĂ©nierie systĂšme basĂ©e sur les modĂšles (MBSE) et des fonctionnalitĂ©s de gestion des donnĂ©es de simulation (SDM). Cette thĂšse a Ă©tĂ© menĂ©e dans le cadre d’un projet de recherche europĂ©en : le projet CRESCENDO qui vise Ă  dĂ©velopper le « Behavioural Digital Aircraft » (BDA) qui a pour vocation d’ĂȘtre la« colonne vertĂ©brale » des activitĂ©s de conception et simulation avancĂ©es en entreprise Ă©tendue. Le concept du BDA doit s’articuler autour d’une plateforme collaborative d’échange et de partage des donnĂ©es de conception et de simulation tout au long du cycle de dĂ©veloppement et de vie des produits aĂ©ronautiques. [...
    corecore