610 research outputs found

    Compressive Privacy for a Linear Dynamical System

    Full text link
    We consider a linear dynamical system in which the state vector consists of both public and private states. One or more sensors make measurements of the state vector and sends information to a fusion center, which performs the final state estimation. To achieve an optimal tradeoff between the utility of estimating the public states and protection of the private states, the measurements at each time step are linearly compressed into a lower dimensional space. Under the centralized setting where all measurements are collected by a single sensor, we propose an optimization problem and an algorithm to find the best compression matrix. Under the decentralized setting where measurements are made separately at multiple sensors, each sensor optimizes its own local compression matrix. We propose methods to separate the overall optimization problem into multiple sub-problems that can be solved locally at each sensor. We consider the cases where there is no message exchange between the sensors; and where each sensor takes turns to transmit messages to the other sensors. Simulations and empirical experiments demonstrate the efficiency of our proposed approach in allowing the fusion center to estimate the public states with good accuracy while preventing it from estimating the private states accurately

    Differentially Private Mixture of Generative Neural Networks

    Get PDF
    Generative models are used in a wide range of applications building on large amounts of contextually rich information. Due to possible privacy violations of the individuals whose data is used to train these models, however, publishing or sharing generative models is not always viable. In this paper, we present a novel technique for privately releasing generative models and entire high-dimensional datasets produced by these models. We model the generator distribution of the training data with a mixture of kk generative neural networks. These are trained together and collectively learn the generator distribution of a dataset. Data is divided into kk clusters, using a novel differentially private kernel kk-means, then each cluster is given to separate generative neural networks, such as Restricted Boltzmann Machines or Variational Autoencoders, which are trained only on their own cluster using differentially private gradient descent. We evaluate our approach using the MNIST dataset, as well as call detail records and transit datasets, showing that it produces realistic synthetic samples, which can also be used to accurately compute arbitrary number of counting queries.Comment: A shorter version of this paper appeared at the 17th IEEE International Conference on Data Mining (ICDM 2017). This is the full version, published in IEEE Transactions on Knowledge and Data Engineering (TKDE

    M2^2M: A general method to perform various data analysis tasks from a differentially private sketch

    Full text link
    Differential privacy is the standard privacy definition for performing analyses over sensitive data. Yet, its privacy budget bounds the number of tasks an analyst can perform with reasonable accuracy, which makes it challenging to deploy in practice. This can be alleviated by private sketching, where the dataset is compressed into a single noisy sketch vector which can be shared with the analysts and used to perform arbitrarily many analyses. However, the algorithms to perform specific tasks from sketches must be developed on a case-by-case basis, which is a major impediment to their use. In this paper, we introduce the generic moment-to-moment (M2^2M) method to perform a wide range of data exploration tasks from a single private sketch. Among other things, this method can be used to estimate empirical moments of attributes, the covariance matrix, counting queries (including histograms), and regression models. Our method treats the sketching mechanism as a black-box operation, and can thus be applied to a wide variety of sketches from the literature, widening their ranges of applications without further engineering or privacy loss, and removing some of the technical barriers to the wider adoption of sketches for data exploration under differential privacy. We validate our method with data exploration tasks on artificial and real-world data, and show that it can be used to reliably estimate statistics and train classification models from private sketches.Comment: Published at the 18th International Workshop on Security and Trust Management (STM 2022
    • …
    corecore