22,223 research outputs found

    A Compressed Classical Description of Quantum States

    Get PDF
    We show how to approximately represent a quantum state using the square root of the usual amount of classical memory. The classical representation of an n-qubit state psi consists of its inner products with O(sqrt{2^n}) stabilizer states. A quantum state initially specified by its 2^n entries in the computational basis can be compressed to this form in time O(2^n poly(n)), and, subsequently, the compressed description can be used to additively approximate the expectation value of an arbitrary observable. Our compression scheme directly gives a new protocol for the vector in subspace problem with randomized one-way communication complexity that matches (up to polylogarithmic factors) the optimal upper bound, due to Raz. We obtain an exponential improvement over Raz\u27s protocol in terms of computational efficiency

    Quantum Lazy Sampling and Game-Playing Proofs for Quantum Indifferentiability

    Get PDF
    Game-playing proofs constitute a powerful framework for non-quantum cryptographic security arguments, most notably applied in the context of indifferentiability. An essential ingredient in such proofs is lazy sampling of random primitives. We develop a quantum game-playing proof framework by generalizing two recently developed proof techniques. First, we describe how Zhandry's compressed quantum oracles~(Crypto'19) can be used to do quantum lazy sampling of a class of non-uniform function distributions. Second, we observe how Unruh's one-way-to-hiding lemma~(Eurocrypt'14) can also be applied to compressed oracles, providing a quantum counterpart to the fundamental lemma of game-playing. Subsequently, we use our game-playing framework to prove quantum indifferentiability of the sponge construction, assuming a random internal function

    Energy Requirements for Quantum Data Compression and 1-1 Coding

    Get PDF
    By looking at quantum data compression in the second quantisation, we present a new model for the efficient generation and use of variable length codes. In this picture lossless data compression can be seen as the {\em minimum energy} required to faithfully represent or transmit classical information contained within a quantum state. In order to represent information we create quanta in some predefined modes (i.e. frequencies) prepared in one of two possible internal states (the information carrying degrees of freedom). Data compression is now seen as the selective annihilation of these quanta, the energy of whom is effectively dissipated into the environment. As any increase in the energy of the environment is intricately linked to any information loss and is subject to Landauer's erasure principle, we use this principle to distinguish lossless and lossy schemes and to suggest bounds on the efficiency of our lossless compression protocol. In line with the work of Bostr\"{o}m and Felbinger \cite{bostroem}, we also show that when using variable length codes the classical notions of prefix or uniquely decipherable codes are unnecessarily restrictive given the structure of quantum mechanics and that a 1-1 mapping is sufficient. In the absence of this restraint we translate existing classical results on 1-1 coding to the quantum domain to derive a new upper bound on the compression of quantum information. Finally we present a simple quantum circuit to implement our scheme.Comment: 10 pages, 5 figure

    Density Matrix in Quantum Mechanics and Distinctness of Ensembles Having the Same Compressed Density Matrix

    Full text link
    We clarify different definitions of the density matrix by proposing the use of different names, the full density matrix for a single-closed quantum system, the compressed density matrix for the averaged single molecule state from an ensemble of molecules, and the reduced density matrix for a part of an entangled quantum system, respectively. We show that ensembles with the same compressed density matrix can be physically distinguished by observing fluctuations of various observables. This is in contrast to a general belief that ensembles with the same compressed density matrix are identical. Explicit expression for the fluctuation of an observable in a specified ensemble is given. We have discussed the nature of nuclear magnetic resonance quantum computing. We show that the conclusion that there is no quantum entanglement in the current nuclear magnetic resonance quantum computing experiment is based on the unjustified belief that ensembles having the same compressed density matrix are identical physically. Related issues in quantum communication are also discussed.Comment: 26 pages. To appear in Foundations of Physics, 36 (8), 200

    Expansion and evaporation of hot nuclei: Comparison between semi-classical and quantal mean-field approaches

    Get PDF
    We present a general discussion of the mean field dynamics of finite nuclei prepared under extreme conditions of temperature and pressure. We compare the prediction of semi-classical approximation with complete quantum simulations. Many features of the dynamics are carefully studied such as the collective expansion, the evaporation process, the different time-scale... This study points out many quantitative differences between quantum and semi-classical approaches. Part of the differences are related to numerical features inherent in semi-classical simulations but most of them are a direct consequence of the non treatment of nuclei as quantal objects. In particular, we show that because of a too strong damping in semi-classical approaches the expansion of hot nuclei is quenched and the speed of the collective motion reduced.Comment: 41 pages including 14 figure

    Randomness in Classical Mechanics and Quantum Mechanics

    Full text link
    The Copenhagen interpretation of quantum mechanics assumes the existence of the classical deterministic Newtonian world. We argue that in fact the Newton determinism in classical world does not hold and in classical mechanics there is fundamental and irreducible randomness. The classical Newtonian trajectory does not have a direct physical meaning since arbitrary real numbers are not observable. There are classical uncertainty relations, i.e. the uncertainty (errors of observation) in the determination of coordinate and momentum is always positive (non zero). A "functional" formulation of classical mechanics was suggested. The fundamental equation of the microscopic dynamics in the functional approach is not the Newton equation but the Liouville equation for the distribution function of the single particle. Solutions of the Liouville equation have the property of delocalization which accounts for irreversibility. The Newton equation in this approach appears as an approximate equation describing the dynamics of the average values of the position and momenta for not too long time intervals. Corrections to the Newton trajectories are computed. An interpretation of quantum mechanics is attempted in which both classical and quantum mechanics contain fundamental randomness. Instead of an ensemble of events one introduces an ensemble of observers.Comment: 12 pages, Late

    Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Full text link
    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states--the quantum states of light emitted by a laser--has immense practical importance. However, quantum mechanics imposes a fundamental limit on how well different coher- ent states can be distinguished, even with perfect detectors, and limits such discrimination to have a finite minimum probability of error. While conventional optical receivers lead to error rates well above this fundamental limit, Dolinar found an explicit receiver design involving optical feedback and photon counting that can achieve the minimum probability of error for discriminating any two given coherent states. The generalization of this construction to larger sets of coherent states has proven to be challenging, evidencing that there may be a limitation inherent to a linear-optics-based adaptive measurement strategy. In this Letter, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multi-copy quantum hypotheses (arXiv:1201.6625) and properties of coherent states. Furthermore, our construction is reusable, composable, and applicable to designing quantum-limited processing of coherent-state signals to optimize any metric of choice. As illustrative examples, we analyze the performance of discriminating a ternary alphabet, and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.Comment: 9 pages, 2 figures; v2 Minor correction
    • …
    corecore