2,321 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    A comprehensive analysis of SVPWM for a Five-phase VSI based on SiC devices applied to motor drives

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a comprehensive analysis of SVPWM for a five-phase VSI based on SiC devices applied to motor drives. The modulation techniques analyzed use medium and large vectors to reach the reference vector. The 2L SVPWM uses two large space vectors, and the generated output signal contain low frequency harmonics. 2L+2M SVPWM uses two large and two medium space vectors. This technique provides good power loss distribution. 4L SVPWM works with the activation of four large space vectors. This modulation is able to generate low common-mode voltage. The performance and main features are analyzed using Matlab/Simulink and PLECS blockset software. Power losses, total harmonic distortion and common-mode voltage are compared and evaluated.Postprint (author's final draft

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y TecnologĂ­a DPI2001-3089Ministerio de EduaciĂłn y Ciencia d TEC2006-0386

    PWM control techniques for three phase three level inverter drives

    Get PDF
    In this paper two very efficient pulse width modulation techniques were discussed named Sin pulse width modulation and space vector pulse width modulation. The basic structure of the three-level inverter neutral-point clamped is introduced and the basic idea about space vector pulse width modulation for three-level voltage source inverter has been discussed in detail. Nearest three vectors space vector pulse width modulation control algorithm is adopted as the control strategy for the three phase three level NPC inverter in order to compensate the neutral-point shifting. Mathematical formulation for calculating switching sequence has determined. Comparative analysis proving superiority of the space vector pulse width modulation technique over the conventional pulse width modulation, and the results of the simulations of inverter confirm the feasibility and advantage of the space vector pulse width modulation strategy over sin pulse width modulation in terms of good utilization of dc-bus voltage, low current ripple and reduced switching frequency. Space vector pulse width modulation provides advantages better fundamental output voltage and useful in improving harmonic performance and reducing total harmonic distortion

    FPGA Implementation of a General Space Vector Approach on a 6-Leg Voltage Source Inverter

    Get PDF
    A general algorithm of a Space Vector approach is implemented on a 6-leg VSI controlling a PM synchronous machine with three independent phases. In this last case, the necessity of controlling the zero-sequence current motivates the choice of a special family of vectors, different of this one used in Pulse Width Modulation (PWM) intersective strategy and in common Space Vector PWM (SVPWM). To preserve the parallelism of the algorithm and fulfill the execution time constraints, the implementation is made on a Field Programmable Gate Array (FPGA). Comparisons with more classical 2-level and 3-level PWM are provided.Fui8 within the SOFRACI projec

    Asenkron motorlar için ayarlanabilir gerilim uygulamalı V/f tabanlı hız denetiminde farklı PWM tekniklerinin performans analizi

    Get PDF
    This paper presents a comparative study and a method to improve Volt-Hertz (V/f) based speed control of Induction Motors (IMs). For this purpose, Sinusoidal Pulse Width Modulation (SPWM) and space vector pulse width modulation (SVPWM) techniques are investigated and evaluated, especially from the point of their control performance on the V/f-based control for three-phase IMs working at different load and speed conditions. From this aspect, it is a different study from the literature. Steady and transient effects of both techniques on the above mentioned control methods are analyzed for several case studies. Afterwards, adjustable boost voltage application with modified reference commands technique is proposed for both PWM methods in order to improve start-up performance. All investigations for both PWM models are carried out under the same conditions. Although SVPWM technique gives more effective results in many cases, the proposed method provides noticeable improvements on SPWM-based applications from point of performance on the control method. As a novelty of this study, it is shown that, the bad performance of the control method at low frequency in SPWM application, which has lower computational burden for low cost microcontroller, can be improved by applying adjustable boost voltage along with modified references that are proportional to the DC bus current

    THD Analysis of a Seven, Nine, and Eleven Level Cascaded H-Bridge Multilevel Inverter for Different Loads

    Get PDF
    A multilevel inverter is implemented for generating the required staircase AC voltage of output from various steps of voltages of DC sources. The multilevel inverter gives a better harmonic spectrum and a compatible quality of output. This article delves into an analytical analysis of the total harmonic distortion (THD) of different multilevel inverters which employ a multicarrier PWM technique. This technique is implemented for operating the switches at their respective angle of conduction. This paper deals with various cascaded H-Bridge multilevel inverters (CMI) with various loads that are modelled by implementing the MATLAB/Simulink platform. The output gives a better result of the proposed model in terms that it is helpful towards reducing the THD and the losses of switching

    Improvements on the carrier-based control method for a three-level T-type, quasi-impedance-source inverter

    Get PDF
    The boost feature that characterizes Z-source and quasi-Z-source converters is usually achieved by means of a proper insertion of short-circuit states in the full DC-link. In this work, a novel pulse width modulation carrier-based strategy for a three-phase, three-level T-type, quasi-Z-source inverter is introduced, based on the addition of alternate short-circuits in the two halves of the DC-link bus. This technique achieves better performance, less electromagnetic interference, and lower harmonic distortion of the output line-to-line voltage compared to the traditional methods based on the full DC-link shoot-through. At the same time, generating the switching states is to easy implement. The proposed strategy permits the use of electronic devices with lower blocking voltage capability, thus improving converter reliability, size, and cost. The new method may be implemented in another multilevel inverter with an impedance-source network as well. A comprehensive simulation study is performed in order to validate the adopted method, with different inverter input voltages, which is taken as representative of a photovoltaic array. Comparisons are conducted with conventional strategy insertions using the same topology in order to show the improvements achieved.‱ Junta de Extremadura (Regional Government), Spain. Programa de Becas de Movilidad para Personal Docente e Investigador de la Comunidad AutĂłnoma de Extremadura 2018, por el fondo para el grupo de investigaciĂłn (GR18087) y el proyecto regional (IB18067). ‱ Agencia Estatal de InvestigaciĂłn (AEI) y Fondo Europeo de Desarrollo Regional (FEDER) españoles, bajo el Proyecto TEC2016-77632-C3-1-R (AEI / FEDER, UE), y a travĂ©s de FCT bajo los contratos UID / CEC / 50021/2019 , Pest-E / EEI / LA0021 / 2014 y UID / Multi / 00308/2019.peerReviewe
    • 

    corecore