25,171 research outputs found

    Predicting and Evaluating Software Model Growth in the Automotive Industry

    Full text link
    The size of a software artifact influences the software quality and impacts the development process. In industry, when software size exceeds certain thresholds, memory errors accumulate and development tools might not be able to cope anymore, resulting in a lengthy program start up times, failing builds, or memory problems at unpredictable times. Thus, foreseeing critical growth in software modules meets a high demand in industrial practice. Predicting the time when the size grows to the level where maintenance is needed prevents unexpected efforts and helps to spot problematic artifacts before they become critical. Although the amount of prediction approaches in literature is vast, it is unclear how well they fit with prerequisites and expectations from practice. In this paper, we perform an industrial case study at an automotive manufacturer to explore applicability and usability of prediction approaches in practice. In a first step, we collect the most relevant prediction approaches from literature, including both, approaches using statistics and machine learning. Furthermore, we elicit expectations towards predictions from practitioners using a survey and stakeholder workshops. At the same time, we measure software size of 48 software artifacts by mining four years of revision history, resulting in 4,547 data points. In the last step, we assess the applicability of state-of-the-art prediction approaches using the collected data by systematically analyzing how well they fulfill the practitioners' expectations. Our main contribution is a comparison of commonly used prediction approaches in a real world industrial setting while considering stakeholder expectations. We show that the approaches provide significantly different results regarding prediction accuracy and that the statistical approaches fit our data best

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    ADAPTS: An Intelligent Sustainable Conceptual Framework for Engineering Projects

    Get PDF
    This paper presents a conceptual framework for the optimization of environmental sustainability in engineering projects, both for products and industrial facilities or processes. The main objective of this work is to propose a conceptual framework to help researchers to approach optimization under the criteria of sustainability of engineering projects, making use of current Machine Learning techniques. For the development of this conceptual framework, a bibliographic search has been carried out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability. This work is part of a broader line of research, in terms of optimization under sustainability criteria.Telefónica Chair “Intelligence in Networks” of the University of Seville (Spain

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Subcritical and supercritical fluid extraction a critical review of its analytical usefulness

    Get PDF
    Subcritical R134a is suggested as a low-pressure alternative to supercritical CO2 in the supercritical fluid extraction technology in particular of palm oil application. Therefore, a measurement of solubility of palm oil in subcritical Rl34a will be carried out at temperatures of 40, 60, 70 and 80°C and pressures up to 300 bar. The solubility of carotene are also will be measured using UV Spectrophotometer. Results obtained from this study will be compared with the previous work and for the first time, simulation for the SFE process of palm oil will be performed using Artificial Neural Network (ANN) and it will be implemented in comparisons as well when the operating conditions of the previous findings are different from this study. It is expected that the solubility of the palm oil in subcritical Rl34a is much higher than SC-C02, and it is expected that R134a could be a viable alternative solvent to supercritical carbon dioxide as R134a could be perform well at a lower pressure used whereas can achieved a higher solubility compared to SC-C0

    Computing Vertex Centrality Measures in Massive Real Networks with a Neural Learning Model

    Full text link
    Vertex centrality measures are a multi-purpose analysis tool, commonly used in many application environments to retrieve information and unveil knowledge from the graphs and network structural properties. However, the algorithms of such metrics are expensive in terms of computational resources when running real-time applications or massive real world networks. Thus, approximation techniques have been developed and used to compute the measures in such scenarios. In this paper, we demonstrate and analyze the use of neural network learning algorithms to tackle such task and compare their performance in terms of solution quality and computation time with other techniques from the literature. Our work offers several contributions. We highlight both the pros and cons of approximating centralities though neural learning. By empirical means and statistics, we then show that the regression model generated with a feedforward neural networks trained by the Levenberg-Marquardt algorithm is not only the best option considering computational resources, but also achieves the best solution quality for relevant applications and large-scale networks. Keywords: Vertex Centrality Measures, Neural Networks, Complex Network Models, Machine Learning, Regression ModelComment: 8 pages, 5 tables, 2 figures, version accepted at IJCNN 2018. arXiv admin note: text overlap with arXiv:1810.1176
    corecore