58 research outputs found

    Otimização do fronthaul ótico para redes de acesso de rádio (baseadas) em computação em nuvem (CC-RANs)

    Get PDF
    Doutoramento conjunto (MAP-Tele) em Engenharia Eletrotécnica/TelecomunicaçõesA proliferação de diversos tipos de dispositivos moveis, aplicações e serviços com grande necessidade de largura de banda têm contribuído para o aumento de ligações de banda larga e ao aumento do volume de trafego das redes de telecomunicações moveis. Este aumento exponencial tem posto uma enorme pressão nos mobile operadores de redes móveis (MNOs). Um dos aspetos principais deste recente desenvolvimento, é a necessidade que as redes têm de oferecer baixa complexidade nas ligações, como também baixo consumo energético, muito baixa latência e ao mesmo tempo uma grande capacidade por baixo usto. De maneira a resolver estas questões, os MNOs têm focado a sua atenção na redes de acesso por rádio em nuvem (C-RAN) principalmente devido aos seus benefícios em termos de otimização de performance e relação qualidade preço. O standard para a distribuição de sinais sem fios por um fronthaul C-RAN é o common public radio interface (CPRI). No entanto, ligações óticas baseadas em interfaces CPRI necessitam de uma grande largura de banda. Estes requerimentos podem também ser atingidos com uma implementação em ligação free space optical (FSO) que é um sistema ótico que usa comunicação sem fios. O FSO tem sido uma alternativa muito apelativa aos sistemas de comunicação rádio (RF) pois combinam a flexibilidade e mobilidade das redes RF ao mesmo tempo que permitem a elevada largura de banda permitida pelo sistema ótico. No entanto, as ligações FSO são suscetíveis a alterações atmosféricas que podem prejudicar o desempenho do sistema de comunicação. Estas limitações têm evitado o FSO de ser tornar uma excelente solução para o fronthaul. Uma caracterização precisa do canal e tecnologias mais avançadas são então necessárias para uma implementação pratica de ligações FSO. Nesta tese, vamos estudar uma implementação eficiente para fronthaul baseada em tecnologia á rádio-sobre-FSO (RoFSO). Propomos expressões em forma fechada para mitigação das perdas de propagação e para a estimação da capacidade do canal de maneira a aliviar a complexidade do sistema de comunicação. Simulações numéricas são também apresentadas para formatos de modulação adaptativas. São também considerados esquemas como um sistema hibrido RF/FSO e tecnologias de transmissão apoiadas por retransmissores que ajudam a alivar os requerimentos impostos por um backhaul/fronthaul de C-RAN. Os modelos propostos não só reduzem o esforço computacional, como também têm outros méritos, tais como, uma elevada precisão na estimação do canal e desempenho, baixo requisitos na capacidade de memória e uma rápida e estável operação comparativamente com o estado da arte em sistemas analíticos (PON)-FSO. Este sistema é implementado num recetor em tempo real que é emulado através de uma field-programmable gate array (FPGA) comercial. Permitindo assim um sistema aberto, interoperabilidade, portabilidade e também obedecer a standards de software aberto. Os esquemas híbridos têm a habilidade de suportar diferentes aplicações, serviços e múltiplos operadores a partilharem a mesma infraestrutura de fibra ótica.The proliferation of different mobile devices, bandwidth-intensive applications and services contribute to the increase in the broadband connections and the volume of traffic on the mobile networks. This exponential growth has put considerable pressure on the mobile network operators (MNOs). In principal, there is a need for networks that not only offer low-complexity, low-energy consumption, and extremely low-latency but also high-capacity at relatively low cost. In order to address the demand, MNOs have given significant attention to the cloud radio access network (C-RAN) due to its beneficial features in terms of performance optimization and cost-effectiveness. The de facto standard for distributing wireless signal over the C-RAN fronthaul is the common public radio interface (CPRI). However, optical links based on CPRI interfaces requires large bandwidth. Also, the aforementioned requirements can be realized with the implementation of free space optical (FSO) link, which is an optical wireless system. The FSO is an appealing alternative to the radio frequency (RF) communication system that combines the flexibility and mobility offered by the RF networks with the high-data rates provided by the optical systems. However, the FSO links are susceptible to atmospheric impairments which eventually hinder the system performance. Consequently, these limitations prevent FSO from being an efficient standalone fronthaul solution. So, precise channel characterizations and advanced technologies are required for practical FSO link deployment and operation. In this thesis, we study an efficient fronthaul implementation that is based on radio-on-FSO (RoFSO) technologies. We propose closedform expressions for fading-mitigation and for the estimation of channel capacity so as to alleviate the system complexity. Numerical simulations are presented for adaptive modulation scheme using advanced modulation formats. We also consider schemes like hybrid RF/FSO and relay-assisted transmission technologies that can help in alleviating the stringent requirements by the C-RAN backhaul/fronthaul. The propose models not only reduce the computational requirements/efforts, but also have a number of diverse merits such as high-accuracy, low-memory requirements, fast and stable operation compared to the current state-of-the-art analytical based approaches. In addition to the FSO channel characterization, we present a proof-of-concept experiment in which we study the transmission capabilities of a hybrid passive optical network (PON)-FSO system. This is implemented with the real-time receiver that is emulated by a commercial field-programmable gate array (FPGA). This helps in facilitating an open system and hence enables interoperability, portability, and open software standards. The hybrid schemes have the ability to support different applications, services, and multiple operators over a shared optical fiber infrastructure

    Analog radio over fiber solutions for multi-band 5g systems

    Get PDF
    This study presents radio over fiber (RoF) solutions for the fifth-generation (5G) of wireless networks. After the state of the art and a technical background review, four main contributions are reported. The first one is proposing and investigating a RoF technique based on a dual-drive Mach-Zehnder modulator (DD-MZM) for multi-band mobile fronthauls, in which two radiofrequency (RF) signals in the predicted 5G bands individually feed an arm of the optical modulator. Experimental results demonstrate the approach enhances the RF interference mitigation and can prevail over traditional methods. The second contribution comprises the integration of a 5G transceiver, previously developed by our group, in a passive optical network (PON) using RoF technology and wavelength division multiplexing (WDM) overlay. The proposed architecture innovates by employing DD-MZM and enables to simultaneously transport baseband and 5G candidate RF signals in the same PON infrastructure. The proof-of-concept includes the transmission of a generalized frequency division multiplexing (GFDM) signal generated by the 5G transceiver in the 700 MHz band, a 26 GHz digitally modulated signal as a millimeter-waves 5G band, and a baseband signal from an gigabit PON (GPON). Experimental results demonstrate the 5G transceiver digital performance when using RoF technology for distributing the GFDM signal, as well as Gbit/s throughput at 26 GHz. The third contribution is the implementation of a flexible-waveform and multi-application fiber-wireless (FiWi) system toward 5G. Such system includes the FiWi transmission of the GFDM and filtered orthogonal frequency division multiplexing (F-OFDM) signals at 788 MHz, toward long-range cells for remote or rural mobile access, as well as the recently launched 5G NR standard in microwave and mm-waves, aiming enhanced mobile broadband indoor and outdoor applications. Digital signal processing (DSP) is used for selecting the waveform and linearizing the RoF link. Experimental results demonstrate the suitability of the proposed solution to address 5G scenarios and requirements, besides the applicability of using existent fiber-to-the-home (FTTH) networks from Internet service providers for implementing 5G systems. Finally, the fourth contribution is the implementation of a multi-band 5G NR system with photonic-assisted RF amplification (PAA). The approach takes advantage of a novel PAA technique, based on RoF technology and four-wave mixing effect, that allows straightforward integration to the transport networks. Experimental results demonstrate iv uniform and stable 15 dB wideband gain for Long Term Evolution (LTE) and three 5G signals, distributed in the frequency range from 780 MHz to 26 GHz and coexisting in the mobile fronthaul. The obtained digital performance has efficiently met the Third-Generation Partnership Project (3GPP) requirements, demonstrating the applicability of the proposed approach for using fiber-optic links to distribute and jointly amplify LTE and 5G signals in the optical domain.Agência 1Este trabalho apresenta soluções de rádio sobre fibra (RoF) para aplicações em redes sem fio de quinta geração (5G), e inclui quatro contribuições principais. A primeira delas refere-se à proposta e investigação de uma técnica de RoF baseada no modulador eletroóptico de braço duplo, dual-drive Mach-Zehnder (DD-MZM), para a transmissão simultânea de sinais de radiofrequência (RF) em bandas previstas para redes 5G. Resultados experimentais demonstram que o uso do DD-MZM favorece a ausência de interferência entre os sinais de RF transmitidos. A segunda contribuição trata da integração de um transceptor de RF, desenvolvido para aplicações 5G e apto a prover a forma de onda conhecida como generalized frequency division multiplexing (GFDM), em uma rede óptica passiva (PON) ao utilizar RoF e multiplexação por divisão de comprimento de onda (WDM). A arquitetura proposta permite transportar, na mesma infraestrutura de rede, sinais em banda base e de radiofrequência nas faixas do espectro candidatas para 5G. A prova de conceito inclui a distribuição conjunta de três tipos de sinais: um sinal GFDM na banda de 700 MHz, proveniente do transceptor desenvolvido; um sinal digital na frequência de 26 GHz, assumindo a faixa de ondas milimétricas; sinais em banda base provenientes de uma PON dedicada ao serviço de Internet. Resultados experimentais demonstram o desempenho do transceptor de RF ao utilizar a referida arquitetura para distribuir sinais GFDM, além de taxas de transmissão de dados da ordem de Gbit/s na faixa de 26 GHz. A terceira contribuição corresponde à implementação de um sistema fibra/rádio potencial para redes 5G, operando inclusive com o padrão ―5G New Radio (5G NR)‖ nas faixas de micro-ondas e ondas milimétricas. Tal sistema é capaz de prover macro células na banda de 700 MHz para aplicações de longo alcance e/ou rurais, utilizando sinais GFDM ou filtered orthogonal frequency division multiplexing (F-OFDM), assim como femto células na banda de 26 GHz, destinada a altas taxas de transmissão de dados para comunicações de curto alcance. Resultados experimentais demonstram a aplicabilidade da solução proposta para redes 5G, além da viabilidade de utilizar redes ópticas pertencentes a provedores de Internet para favorecer sistemas de nova geração. Por fim, a quarta contribuição trata da implementação de um sistema 5G NR multibanda, assistido por amplificação de RF no domínio óptico. Esse sistema faz uso de um novo método de amplificação, baseado no efeito não linear da mistura de quatro ondas, que vi permite integração direta em redes de transporte envolvendo rádio sobre fibra. Resultados experimentais demonstram ganho de RF igual a 15 dB em uma ampla faixa de frequências (700 MHz até 26 GHz), atendendo simultaneamente tecnologias de quarta e quinta geração. O desempenho digital obtido atendeu aos requisitos estabelecidos pela 3GPP (Third-Generation Partnership Project), indicando a aplicabilidade da solução em questão para distribuir e conjuntamente amplificar sinais de RF em enlaces de fibra óptica

    Optimization of 5G Second Phase Heterogeneous Radio Access Networks with Small Cells

    Get PDF
    Due to the exponential increase in high data-demanding applications and their services per coverage area, it is becoming challenging for the existing cellular network to handle the massive sum of users with their demands. It is conceded to network operators that the current wireless network may not be capable to shelter future traffic demands. To overcome the challenges the operators are taking interest in efficiently deploying the heterogeneous network. Currently, 5G is in the commercialization phase. Network evolution with addition of small cells will develop the existing wireless network with its enriched capabilities and innovative features. Presently, the 5G global standardization has introduced the 5G New Radio (NR) under the 3rd Generation Partnership Project (3GPP). It can support a wide range of frequency bands (<6 GHz to 100 GHz). For different trends and verticals, 5G NR encounters, functional splitting and its cost evaluation are well-thought-out. The aspects of network slicing to the assessment of the business opportunities and allied standardization endeavours are illustrated. The study explores the carrier aggregation (Pico cellular) technique for 4G to bring high spectral efficiency with the support of small cell massification while benefiting from statistical multiplexing gain. One has been able to obtain values for the goodput considering CA in LTE-Sim (4G), of 40 Mbps for a cell radius of 500 m and of 29 Mbps for a cell radius of 50 m, which is 3 times higher than without CA scenario (2.6 GHz plus 3.5 GHz frequency bands). Heterogeneous networks have been under investigation for many years. Heterogeneous network can improve users service quality and resource utilization compared to homogeneous networks. Quality of service can be enhanced by putting the small cells (Femtocells or Picocells) inside the Microcells or Macrocells coverage area. Deploying indoor Femtocells for 5G inside the Macro cellular network can reduce the network cost. Some service providers have started their solutions for indoor users but there are still many challenges to be addressed. The 5G air-simulator is updated to deploy indoor Femto-cell with proposed assumptions with uniform distribution. For all the possible combinations of apartments side length and transmitter power, the maximum number of supported numbers surpassed the number of users by more than two times compared to papers mentioned in the literature. Within outdoor environments, this study also proposed small cells optimization by putting the Pico cells within a Macro cell to obtain low latency and high data rate with the statistical multiplexing gain of the associated users. Results are presented 5G NR functional split six and split seven, for three frequency bands (2.6 GHz, 3.5GHz and 5.62 GHz). Based on the analysis for shorter radius values, the best is to select the 2.6 GHz to achieve lower PLR and to support a higher number of users, with better goodput, and higher profit (for cell radius u to 400 m). In 4G, with CA, from the analysis of the economic trade-off with Picocell, the Enhanced multi-band scheduler EMBS provide higher revenue, compared to those without CA. It is clearly shown that the profit of CA is more than 4 times than in the without CA scenario. This means that the slight increase in the cost of CA gives back more than 4-time profit relatively to the ”without” CA scenario.Devido ao aumento exponencial de aplicações/serviços de elevado débito por unidade de área, torna-se bastante exigente, para a rede celular existente, lidar com a enormes quantidades de utilizadores e seus requisitos. É reconhecido que as redes móveis e sem fios atuais podem não conseguir suportar a procura de tráfego junto dos operadores. Para responder a estes desafios, os operadores estão-se a interessar pelo desenvolvimento de redes heterogéneas eficientes. Atualmente, a 5G está na fase de comercialização. A evolução destas redes concretizar-se-á com a introdução de pequenas células com aptidões melhoradas e características inovadoras. No presente, os organismos de normalização da 5G globais introduziram os Novos Rádios (NR) 5G no contexto do 3rd Generation Partnership Project (3GPP). A 5G pode suportar uma gama alargada de bandas de frequência (<6 a 100 GHz). Abordam-se as divisões funcionais e avaliam-se os seus custos para as diferentes tendências e verticais dos NR 5G. Ilustram-se desde os aspetos de particionamento funcional da rede à avaliação das oportunidades de negócio, aliadas aos esforços de normalização. Exploram-se as técnicas de agregação de espetro (do inglês, CA) para pico células, em 4G, a disponibilização de eficiência espetral, com o suporte da massificação de pequenas células, e o ganho de multiplexagem estatística associado. Obtiveram-se valores do débito binário útil, considerando CA no LTE-Sim (4G), de 40 e 29 Mb/s para células de raios 500 e 50 m, respetivamente, três vezes superiores em relação ao caso sem CA (bandas de 2.6 mais 3.5 GHz). Nas redes heterogéneas, alvo de investigação há vários anos, a qualidade de serviço e a utilização de recursos podem ser melhoradas colocando pequenas células (femto- ou pico-células) dentro da área de cobertura de micro- ou macro-células). O desenvolvimento de pequenas células 5G dentro da rede com macro-células pode reduzir os custos da rede. Alguns prestadores de serviços iniciaram as suas soluções para ambientes de interior, mas ainda existem muitos desafios a ser ultrapassados. Atualizou-se o 5G air simulator para representar a implantação de femto-células de interior com os pressupostos propostos e distribuição espacial uniforme. Para todas as combinações possíveis do comprimento lado do apartamento, o número máximo de utilizadores suportado ultrapassou o número de utilizadores suportado (na literatura) em mais de duas vezes. Em ambientes de exterior, propuseram-se pico-células no interior de macro-células, de forma a obter atraso extremo-a-extremo reduzido e taxa de transmissão dados elevada, resultante do ganho de multiplexagem estatística associado. Apresentam-se resultados para as divisões funcionais seis e sete dos NR 5G, para 2.6 GHz, 3.5GHz e 5.62 GHz. Para raios das células curtos, a melhor solução será selecionar a banda dos 2.6 GHz para alcançar PLR (do inglês, PLR) reduzido e suportar um maior número de utilizadores, com débito binário útil e lucro mais elevados (para raios das células até 400 m). Em 4G, com CA, da análise do equilíbrio custos-proveitos com pico-células, o escalonamento multi-banda EMBS (do inglês, Enhanced Multi-band Scheduler) disponibiliza proveitos superiores em comparação com o caso sem CA. Mostra-se claramente que lucro com CA é mais de quatro vezes superior do que no cenário sem CA, o que significa que um aumento ligeiro no custo com CA resulta num aumento de 4-vezes no lucro relativamente ao cenário sem CA

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    ADVANCED RADIO ACCESS NETWORK FEATURING FLEXIBLE PER-UE SERVICE PROVISIONING AND COLLABORATIVE MOBILE EDGE COMPUTING

    Get PDF
    Enriched by numerous technological advances, radio access networks (RANs) in the fifth mobile networks generation (5G)-and-beyond strive to meet the goals of both mobile network operators (MNOs) and end-users. While MNOs seek efficiency, resiliency, reliability and flexibility of their networks, end-users are more concerned with the variety and quality of the provided, state-of-the-art, reasonably priced services. This has resulted in a complex, multi-tier, and heterogeneous RAN architecture that is severely challenged to achieve and maintain a strict reliability requirement of seven-nines (i.e., 99.99999% network up-time) and to meet ultra-reliable, low latency communications (URLLC) requirements with a latency upper bound of 1 ms end-to-end roundtrip time. Based on the flexible function split concept and data-plane programmability, this dissertation makes several key contributions to the body of knowledge on advanced, service-oriented RANs in two key core components. The first core component pertains to improving fronthaul efficiency, resiliency, flexibility, and latency performance with a cross-layer integration of Analog-Option-9 function split in the flexible fronthaul paradigm. Within the folds of that, the novel cross-layer digital-analog integration is experimentally investigated to pave the way for promising analog technologies to find their niche in 5G-and-beyond. The second core component is related to the design of lightweight, fronthaul-positioned multi-access edge computing (MEC) units to host Cooperative-URLLC applications at the edge of the fronthaul. Hence, from the vertical perspective, the dissertation provides solutions to support general URLLC applications and the Cooperative-URLLC variation by shrinking and eliminating latency sources at the Top-of-RAN and Low-RAN segments of advanced RANs.Ph.D

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Photonic Millimeter Wave Signal Generation and Transmission Over Hybrid Links in 5G Communication Networks

    Full text link
    [ES] El estándar de quinta generación (5G) es la clave potencial para satisfacer el aumento exponencial en la demanda de nuevas aplicaciones, servicios y usuarios. La tecnología 5G ofrecerá una latencia extremadamente baja de 1 ms, una velocidad máxima de datos de 10 Gbit/s, una alta densidad de conexión de hasta 106 dispositivos/km2 y permitirá una alta movilidad de los dispositivos de hasta 500 km/h. En esta Tesis se proponen varias soluciones basadas en tecnologías habilitadoras para el despliegue de redes 5G. La arquitectura de la red de acceso de radio en la nube (C-RAN) se emplea junto con las técnicas de Fotónica de Microondas como una solución prometedora para generar y transmitir señales de ondas milimétricas (mmW) en la próxima generación de comunicaciones móviles. La tecnología radio sobre fibra (RoF) ha demostrado ser una buena opción para enfrentarse al desafío de la distribución inalámbrica mmW debido a la gran distancia de transmisión, el gran ancho de banda y la inmunidad a las interferencias electromagnéticas, entre algunas de las principales ventajas. Además, esta tecnología se puede ampliar con comunicaciones ópticas de espacio libre (FSO) en sistemas de radio sobre FSO (RoFSO) en las redes inalámbricas. En esta Tesis, las señales mmW se generan fotónicamente mediante modulación externa de doble banda lateral con supresión de portadora (CS-DSB) y se distribuyen a través de enlaces fronthaul híbridos RoF/FSO. Además, la generación múltiple de señales permite la distribución reconfigurable en canales multiplexados por división de longitud de onda (WDM) desde una oficina central hasta las estaciones base, y se ha evaluado el impacto de las turbulencias producidas en los canales FSO sobre las señales mmW generadas fotónicamente en términos de fluctuaciones de potencia y ruido de fase de la señal. Se propone la técnica de modulación directa de un láser (DML) como solución principal para la transmisión de datos a través de enlaces ópticos híbridos que emplean un esquema de multiplicación de frecuencias ópticas, es decir, CS-DSB, para la generación de señales de mmW. En concreto, se evalúan teórica y experimentalmente los esquemas de generación fotónica local y remoto de señales mmW y se comparan para su implementación práctica en la red frontal de la C-RAN y, además, se estudia experimentalmente el impacto de la distorsión armónica y de la intermodulación en la transmisión de datos. Igualmente, con el fin de obtener la capacidad que ofrece el DML en términos de ancho de banda, también se presenta una evaluación teórica y experimental del efecto de la dispersión de la fibra y el chirp sobre diferentes anchos de banda de señales de M-modulación de amplitud en cuadratura (QAM). No obstante, la Tesis también incluye otro enfoque para la transmisión de datos basado en el uso de otro modulador externo. En este caso, la demostración experimental de la generación de señales ópticas empleando CS-DSB y la transmisión de señales a través de fibra híbrida y red frontal FSO se completa con un enlace de antena que permite transmitir señales 5G 64/256-QAM. La investigación realizada con los sistemas CS-DSB y DSB también permiten comparar la robustez frente al desvanecimiento inducido por la dispersión cromática de la fibra. Además, se ha realizado una evaluación experimental impacto las turbulencias producidas en los canales FSO sobre las señales mmW generadas fotónicamente con diferentes distribuciones térmicas y se ha cuantificado la degradación de la señal de datos de acuerdo con las condiciones de la turbulencia. Como demostradores finales, esta Tesis incluye un sistema de transmisión full-dúplex que emplea señales 5G en enlace descendente (DL) a 39 GHz y en enlace ascendente (UL) a 37 GHz; y la transmisión de señales OFDM LTE de 60 GHz (DL) y 25 GHz (UL) sobre una infraestructura heterogénea de frontal óptico que consiste en fibra óptica de 10 km, un canal FSO de 100 m y un enlace de radio inalámbrico de 2 m.[CA] L'estàndard de quinta generació (5G) és la clau potencial per a satisfer l'augment exponencial en la demanda de noves aplicacions, serveis i usuaris. La tecnologia 5G oferirà una latència extremadament baixa d'1 ms, una velocitat màxima de dades de 10 Gbit/s, una alta densitat de connexió de fins a 106 dispositius/km2 i permetrà una alta mobilitat dels dispositius de fins a 500 km/h. En aquesta tesi es proposen diverses solucions basades en tecnologies habilitadores per al desplegament de xarxes 5G. L'arquitectura de la xarxa d'accés de ràdio en el núvol (CRAN) s'empra junt amb les tècniques de Fotònica de Microones com una solució prometedora per a generar i transmetre senyals d'ones mil·limètriques (mmW) en la pròxima generació de comunicacions mòbils. La tecnologia ràdio sobre fibra ( RoF) ha demostrat ser una bona opció per a enfrontar-se al desafiament de la distribució sense fil mmW a causa de la gran distància de transmissió, el gran ample de banda i la immunitat a les interferències electromagnètiques, entre alguns dels principals avantatges. A més, aquesta tecnologia es pot ampliar amb comunicacions òptiques d'espai lliure (FSO) en sistemes de ràdio sobre FSO (RoFSO) en les xarxes sense fil. En aquesta Tesi, els senyals mmW es generen fotònicament per mitjà de modulació externa de doble banda lateral amb supressió de portadora (CS-DSB) i es distribueixen a través d'enllaços frontals híbrids RoF/FSO.. A més, la generació múltiple de senyals permet la distribució reconfigurable en canals multiplexats per divisió de longitud d'ona ( WDM) des d'una oficina central fins a les estacions base, i s'ha avaluat l'impacte de les turbulències produïdes en els canals FSO sobre els senyals mmW generades fotònicament en termes de fluctuacions de potència i soroll de fase del senyal. Aquest treball proposa la tècnica de modulació directa d'un làser (DML) com solució principal per a la transmissió de dades a través d'enllaços òptics híbrids que fan servir un esquema de multiplicació de freqüències òptiques, és a dir, CS-DSB, per a la generació de senyals de mmW. En concret, s'avalua teòric i experimentalment els esquemes de generació fotònica local i remota de senyals mmW i es comparen per a la seua implementació pràctica a la xarxa frontal de la C-RAN i a més, s'estudia experimentalment l'impacte de la distorsió harmònica i de la intermodulació en la transmissió de dades. Igualment, amb el fi d'obtindre la capacitat que ofereix el DML en termes d'amplada de banda, també es presenta una avaluació teòrica i experimental de l'efecte de la dispersió de la fibra i el chirp sobre diferents amples de banda de senyals de M-modulació d'amplitud en quadratura (QAM). No obstant això, la Tesis també inclou altre enfocament per a la transmissió de dades basat amb l¿ús d'altre modulador extern. En aquest cas, la demostració experimental de la generació de senyals òptics emprant CS-DSB i la transmissió de senyals a través de fibra híbrida i xarxa frontal FSO es completa com un enllaç d'antena que permet transmetre senyals 5G 64/256-QAM. La investigació realitzada amb els sistemes CS-DSB i DSB també permet comparar la seua robustesa davant l¿esvaïment induït per la dispersió cromàtica. A més, s'ha avaluat experimentalment l'impacte de les turbulències produïdes en els canals FSO sobre els senyals mmW generades fotònicament amb diferents distribucions tèrmiques i s'ha quantificat la degradació del senyal de dades d'acord amb les condicions de la turbulència. Com a demostradors finals, aquesta Tesi inclou un sistema de transmissió full-dúplex que empra senyals 5G en enllaç descendent (DL) a 39 GHz i en enllaç ascendent (UL) a 37 GHz; i la transmissió de senyals OFDM LTE de 60 GHz (DL) i 25 GHz (UL) sobre una infraestructura heterogènia de frontal òptic que consisteix en fibra òptica de 10 km, un canal FSO de 100 m i un enllaç de ràdio sense fil de 2 m.[EN] The fifth generation (5G) standard is the potential key to meet the exponentially increasing demand of the emerging applications, services and mobile end users. 5G technology will offer an extremely low latency of 1 ms, peak data rate of 10 Gbit/s, high contention density up to 106 devices/km2 and enable high mobility up to 500 km/h. This Thesis proposes several solutions based on enabling technologies for deploying 5G networks. Cloud-radio access network (C-RAN) architecture is employed in conjunction with microwave photonics techniques as a promising solution to generate and transmit millimeter wave (mmW) signals in the next generation of mobile communications. Radio over fiber (RoF) has been demonstrated as a good option to face the challenge of mmW wireless distribution, due to long transmission distance, large bandwidth and immunity to electromagnetic interference, as some of the main advantages. Moreover, this technology can be extended with free-space optical (FSO) communications in Radio over FSO systems (RoFSO) as wireless networks. In this Thesis, mmW signals are photonically generated by carrier suppressed double sideband (CS-DSB) external modulation and distributed over hybrid RoF/FSO fronthaul links. Moreover, multiple generated signals allow reconfigurable distribution in wavelength-division multiplexed (WDM) channels from a central office to the base stations, and the impact of turbulent FSO channels on photonically generated mmW signals has been evaluated in terms of power signal fluctuations and phase noise. A directly modulated laser (DML) is proposed as a major solution for signal transmission over hybrid optical links employing optical frequency multiplication scheme, i.e. CS-DSB, for mmW signal generation. Moreover, local and remote photonic mmW signal generation schemes are theoretically and experimentally evaluated and compared for practical deployment in C-RAN fronthaul network while the impact of harmonic and intermodulation distortion on data transmission is also experimentally studied. Furthermore, for the sake of obtaining the DML usability in terms of bandwidth, theoretical and experimental evaluation of the effect of fiber dispersion and chirp over different M-quadrature amplitude modulation (QAM) signals bandwidth is also presented. Another data transmission approach based on the cascade of two external modulators is also employed in the Thesis. In this case, the experimental demonstration of optical signal generation employing CS-DSB and signal transmission over hybrid fiber and FSO fronthaul network is completed with a seamless antenna link leading to successful transmission of 64/256-QAM 5G signals. The CS-DSB and DSB schemes are also investigated for the sake of comparison in terms of robustness against fiber chromatic dispersion-induced fading. Furthermore, experimental evaluation of the impact of turbulent FSO links on photonically generated mmW signals with different thermal distributions has been performed and data signal degradation has been quantified according to the turbulence conditions. As final demonstrators, the Thesis includes a full-duplex transmission system employing 39 GHz downlink (DL) and 37 GHz uplink (UL) 5G signals over hybrid links; and 60 GHz (DL) and 25 GHz (UL) OFDM LTE signal transmission over an heterogeneous optical fronthaul infrastructure consisting of 10 km optical fiber, 100 m FSO channel and 2 m wireless radio link.I would like to acknowledge the financial support given by Research Excellence Award Programme GVA PROMETEO 2017/103 Future Microwave Photonics and European Network for High Performance Integrated Microwave Photonics (EUIMWP) CA16220.Vallejo Castro, L. (2022). Photonic Millimeter Wave Signal Generation and Transmission Over Hybrid Links in 5G Communication Networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19025
    corecore