2,702 research outputs found

    Geometry-based localization for GPS outage in vehicular cyber physical systems

    Get PDF
    Vehicular localization has witnessed significant attention due to the growing number of location-based services in vehicular cyber physical systems (VCPS). In vehicular localization, GPS outage is a challenging issue considering the growing urbanization including high rise buildings, multilevel flyovers and bridges. GPS-free and GPS-assisted cooperative localization techniques have been suggested in the literature for GPS outage. Due to the cost of infrastructure in GPS-free techniques, and the absence of location aware neighbors in cooperative techniques, efficient and scalable localization is a challenging task in VCPS. In this context, this paper proposes a geometry-based localization for GPS outage in VCPS (GeoLV). It is a GPS-assisted localization which reduces location-aware neighbor constraint of cooperative localization. GeoLV utilizes mathematical geometry to estimate vehicle location focusing on vehicular dynamics and road trajectory. The static and dynamic relocations are performed to reduce the impact of GPS outage on location-based services. A case study based comparative performance evaluation has been carried out to assess the efficiency and scalability of GeoLV. It is evident from the results that GeoLV handles both shorter and longer GPS outage problem better than the state-of-the-art techniques in VCPS

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    Š 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Feasibility of Warehouse Drone Adoption and Implementation

    Get PDF
    While aerial delivery drones capture headlines, the pace of adoption of drones in warehouses has shown the greatest acceleration. Warehousing constitutes 30% of the cost of logistics in the US. The rise of e-commerce, greater customer service demands of retail stores, and a shortage of skilled labor have intensified competition for efficient warehouse operations. This takes place during an era of shortening technology life cycles. This paper integrates several theoretical perspectives on technology diffusion and adoption to propose a framework to inform supply chain decision-makers on when to invest in new robotics technology

    Time Domain Measurements of Signals Backscattered by Wideband RFID Tags

    Get PDF
    Passive wideband RFID is increasing interest for its capability of providing high-accuracy tag localization in addition to identification and tag-reader communication. The measurement of backscattering capabilities of wideband antennas is usually conducted in the frequency domain by using network analyzers, which does not allow for the extraction of the antenna mode component of the backscattered signal when the antenna load is time variant. To overcome this issue, in this paper we present a novel setup for time domain measurements of signals backscattered by wideband RFID tags. Experimental evaluations are presented for comparing different wideband antennas and show the effects of the setup characteristics and of the processing schemes on the achievable measurement results

    A COGNITIVE ARCHITECTURE FOR AMBIENT INTELLIGENCE

    Get PDF
    L’Ambient Intelligence (AmI) è caratterizzata dall’uso di sistemi pervasivi per monitorare l’ambiente e modificarlo secondo le esigenze degli utenti e rispettando vincoli definiti globalmente. Questi sistemi non possono prescindere da requisiti come la scalabilità e la trasparenza per l’utente. Una tecnologia che consente di raggiungere questi obiettivi è rappresentata dalle reti di sensori wireless (WSN), caratterizzate da bassi costi e bassa intrusività. Tuttavia, sebbene in grado di effettuare elaborazioni a bordo dei singoli nodi, le WSN non hanno da sole le capacità di elaborazione necessarie a supportare un sistema intelligente; d’altra parte senza questa attività di pre-elaborazione la mole di dati sensoriali può facilmente sopraffare un sistema centralizzato con un’eccessiva quantità di dettagli superflui. Questo lavoro presenta un’architettura cognitiva in grado di percepire e controllare l’ambiente di cui fa parte, basata su un nuovo approccio per l’estrazione di conoscenza a partire dai dati grezzi, attraverso livelli crescenti di astrazione. Le WSN sono utilizzate come strumento sensoriale pervasivo, le cui capacità computazionali vengono utilizzate per pre-elaborare i dati rilevati, in modo da consentire ad un sistema centralizzato intelligente di effettuare ragionamenti di alto livello. L’architettura proposta è stata utilizzata per sviluppare un testbed dotato degli strumenti hardware e software necessari allo sviluppo e alla gestione di applicazioni di AmI basate su WSN, il cui obiettivo principale sia il risparmio energetico. Per fare in modo che le applicazioni di AmI siano in grado di comunicare con il mondo esterno in maniera affidabile, per richiedere servizi ad agenti esterni, l’architettura è stata arricchita con un protocollo di gestione distribuita della reputazione. È stata inoltre sviluppata un’applicazione di esempio che sfrutta le caratteristiche del testbed, con l’obiettivo di controllare la temperatura in un ambiente lavorativo. Quest’applicazione rileva la presenza dell’utente attraverso un modulo per la fusione di dati multi-sensoriali basato su reti bayesiane, e sfrutta questa informazione in un controllore fuzzy multi-obiettivo che controlla gli attuatori sulla base delle preferenze dell’utente e del risparmio energetico.Ambient Intelligence (AmI) systems are characterized by the use of pervasive equipments for monitoring and modifying the environment according to users’ needs, and to globally defined constraints. Furthermore, such systems cannot ignore requirements about ubiquity, scalability, and transparency to the user. An enabling technology capable of accomplishing these goals is represented by Wireless Sensor Networks (WSNs), characterized by low-costs and unintrusiveness. However, although provided of in-network processing capabilities, WSNs do not exhibit processing features able to support comprehensive intelligent systems; on the other hand, without this pre-processing activities the wealth of sensory data may easily overwhelm a centralized AmI system, clogging it with superfluous details. This work proposes a cognitive architecture able to perceive, decide upon, and control the environment of which the system is part, based on a new approach to knowledge extraction from raw data, that addresses this issue at different abstraction levels. WSNs are used as the pervasive sensory tool, and their computational capabilities are exploited to remotely perform preliminary data processing. A central intelligent unit subsequently extracts higher-level concepts in order to carry on symbolic reasoning. The aim of the reasoning is to plan a sequence of actions that will lead the environment to a state as close as possible to the users’ desires, taking into account both implicit and explicit feedbacks from the users, while considering global system-driven goals, such as energy saving. The proposed conceptual architecture was exploited to develop a testbed providing the hardware and software tools for the development and management of AmI applications based on WSNs, whose main goal is energy saving for global sustainability. In order to make the AmI system able to communicate with the external world in a reliable way, when some services are required to external agents, the architecture was enriched with a distributed reputation management protocol. A sample application exploiting the testbed features was implemented for addressing temperature control in a work environment. Knowledge about the user’s presence is obtained through a multi-sensor data fusion module based on Bayesian networks, and this information is exploited by a multi-objective fuzzy controller that operates on actuators taking into account users’ preference and energy consumption constraints
    • …
    corecore