1,892 research outputs found

    Finding Temporal Patterns in Noisy Longitudinal Data: A Study in Diabetic Retinopathy

    Get PDF
    This paper describes an approach to temporal pattern mining using the concept of user defined temporal prototypes to define the nature of the trends of interests. The temporal patterns are defined in terms of sequences of support values associated with identified frequent patterns. The prototypes are defined mathematically so that they can be mapped onto the temporal patterns. The focus for the advocated temporal pattern mining process is a large longitudinal patient database collected as part of a diabetic retinopathy screening programme, The data set is, in itself, also of interest as it is very noisy (in common with other similar medical datasets) and does not feature a clear association between specific time stamps and subsets of the data. The diabetic retinopathy application, the data warehousing and cleaning process, and the frequent pattern mining procedure (together with the application of the prototype concept) are all described in the paper. An evaluation of the frequent pattern mining process is also presented

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    Experience: Quality benchmarking of datasets used in software effort estimation

    Get PDF
    Data is a cornerstone of empirical software engineering (ESE) research and practice. Data underpin numerous process and project management activities, including the estimation of development effort and the prediction of the likely location and severity of defects in code. Serious questions have been raised, however, over the quality of the data used in ESE. Data quality problems caused by noise, outliers, and incompleteness have been noted as being especially prevalent. Other quality issues, although also potentially important, have received less attention. In this study, we assess the quality of 13 datasets that have been used extensively in research on software effort estimation. The quality issues considered in this article draw on a taxonomy that we published previously based on a systematic mapping of data quality issues in ESE. Our contributions are as follows: (1) an evaluation of the “fitness for purpose” of these commonly used datasets and (2) an assessment of the utility of the taxonomy in terms of dataset benchmarking. We also propose a template that could be used to both improve the ESE data collection/submission process and to evaluate other such datasets, contributing to enhanced awareness of data quality issues in the ESE community and, in time, the availability and use of higher-quality datasets

    Evaluation of imputation techniques with varying percentage of missing data

    Full text link
    Missing data is a common problem which has consistently plagued statisticians and applied analytical researchers. While replacement methods like mean-based or hot deck imputation have been well researched, emerging imputation techniques enabled through improved computational resources have had limited formal assessment. This study formally considers five more recently developed imputation methods: Amelia, Mice, mi, Hmisc and missForest - compares their performances using RMSE against actual values and against the well-established mean-based replacement approach. The RMSE measure was consolidated by method using a ranking approach. Our results indicate that the missForest algorithm performed best and the mi algorithm performed worst.Comment: 16 pages, 21 figures, 3 table

    Deep generative modeling for single-cell transcriptomics.

    Get PDF
    Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task

    A New Method for Estimation of Missing Data Based on Sampling Methods for Data Mining

    No full text
    International audienceToday we collect large amounts of data and we receive more than we can handle, the accumulated data are often raw and far from being of good quality they contain Missing Values and noise. The presence of Missing Values in data are major disadvantages for most Datamining algorithms. Intuitively, the pertinent information is embedded in many attributes and its extraction is only possible if the original data are cleaned and pre-treated. In this paper we propose a new technique for preprocessing data that aims to estimate the Missing Values, in order to obtain representative Samples of good quality, and also to assure that the information extracted is more safe and reliable

    Parameter estimation in Cox models with missing failure indicators and the OPPERA study

    Get PDF
    In a prospective cohort study, examining all participants for incidence of the condition of interest may be prohibitively expensive. For example, the "gold standard" for diagnosing temporomandibular disorder (TMD) is a physical examination by a trained clinician. In large studies, examining all participants in this manner is infeasible. Instead, it is common to use questionnaires to screen for incidence of TMD and perform the "gold standard" examination only on participants who screen positively. Unfortunately, some participants may leave the study before receiving the "gold standard" examination. Within the framework of survival analysis, this results in missing failure indicators. Motivated by the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study, a large cohort study of TMD, we propose a method for parameter estimation in survival models with missing failure indicators. We estimate the probability of being an incident case for those lacking a "gold standard" examination using logistic regression. These estimated probabilities are used to generate multiple imputations of case status for each missing examination that are combined with observed data in appropriate regression models. The variance introduced by the procedure is estimated using multiple imputation. The method can be used to estimate both regression coefficients in Cox proportional hazard models as well as incidence rates using Poisson regression. We simulate data with missing failure indicators and show that our method performs as well as or better than competing methods. Finally, we apply the proposed method to data from the OPPERA study.Comment: Version 4: 23 pages, 0 figure
    • 

    corecore