1,933 research outputs found

    A comprehensive electromagnetic analysis of AC losses in large superconducting cables

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 173-176).by Yu Ju Chen.Ph.D

    Overview of H-Formulation: A Versatile Tool for Modeling Electromagnetics in High-Temperature Superconductor Applications

    Get PDF
    This paper reviews the modeling of high-temperature superconductors (HTS) using the finiteelement method (FEM) based on the H-formulation of Maxwell\u27s equations. This formulation has become the most popular numerical modeling method for simulating the electromagnetic behavior of HTS, especially thanks to the easiness of implementation in the commercial finite-element program COMSOL Multiphysics. Numerous studies prove that the H-formulation is able to simulate a wide scope of HTS topologies, from simple geometries such as HTS tapes and coils, to more complex HTS devices, up to large superconducting magnets. In this paper, we review the basics of the H-formulation, its evolution from 2D to 3D, its application for calculating critical currents and AC losses as well as magnetization of HTS bulks and tape stacks. We also review the use of the H-formulation for large-scale HTS applications, its use to solve multi-physics problems involving electromagnetic-thermal and electromagnetic-mechanical couplings, and its application to study the dynamic resistance of superconductors and flux pumps

    Alternating current loss of superconductors applied to superconducting electrical machines

    Get PDF
    Superconductor technology has recently attracted increasing attention in power-generation- and electrical-propulsion-related domains, as it provides a solution to the limited power density seen by the core component, electrical machines. Superconducting machines, characterized by both high power density and high efficiency, can effectively reduce the size and mass compared to conventional machine designs. This opens the way to large-scale purely electrical applications, e.g., all-electrical aircrafts. The alternating current (AC) loss of superconductors caused by time-varying transport currents or magnetic fields (or both) has impaired the efficiency and reliability of superconducting machines, bringing severe challenges to the cryogenic systems, too. Although much research has been conducted in terms of the qualitative and quantitative analysis of AC loss and its reduction methods, AC loss remains a crucial problem for the design of highly efficient superconducting machines, especially for those operating at high speeds for future aviation. Given that a critical review on the research advancement regarding the AC loss of superconductors has not been reported during the last dozen years, especially combined with electrical machines, this paper aims to clarify its research status and provide a useful reference for researchers working on superconducting machines. The adopted superconducting materials, analytical formulae, modelling methods, measurement approaches, as well as reduction techniques for AC loss of low-temperature superconductors (LTSs) and high-temperature superconductors (HTSs) in both low- and high-frequency fields have been systematically analyzed and summarized. Based on the authors’ previous research on the AC loss characteristics of HTS coated conductors (CCs), stacks, and coils at high frequencies, the challenges for the existing AC loss quantification methods have been elucidated, and multiple suggestions with respect to the AC loss reduction in superconducting machines have been put forward. This article systematically reviews the qualitative and quantitative analysis methods of AC loss as well as its reduction techniques in superconductors applied to electrical machines for the first time. It is believed to help deepen the understanding of AC loss and deliver a helpful guideline for the future development of superconducting machines and applied superconductivity

    Machine Protection and Interlock Systems for Circular Machines - Example for LHC

    Full text link
    This paper introduces the protection of circular particle accelerators from accidental beam losses. Already the energy stored in the beams for accelerators such as the TEVATRON at Fermilab and Super Proton Synchrotron (SPS) at CERN could cause serious damage in case of uncontrolled beam loss. With the CERN Large Hadron Collider (LHC), the energy stored in particle beams has reached a value two orders of magnitude above previous accelerators and poses new threats with respect to hazards from the energy stored in the particle beams. A single accident damaging vital parts of the accelerator could interrupt operation for years. Protection of equipment from beam accidents is mandatory. Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. extraction of the beam towards a dedicated beam dump block or stopping the beam at low energy) and an interlock system providing the glue between these systems. This lecture will provide an overview of the design of protection systems for accelerators and introduce various protection systems. The principles are illustrated with examples from LHC.Comment: 23 pages, contribution to the 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection, Newport Beach, CA, USA , 5-14 Nov 201

    Machine Protection

    Full text link
    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron-positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an interlock system providing the glue between these systems. The most recent accelerator, the LHC, will operate with about 3x10 14 protons per beam, corresponding to an energy stored in each beam of 360 MJ. This energy can cause massive damage to accelerator equipment in case of uncontrolled beam loss, and a single accident damaging vital parts of the accelerator could interrupt operation for years. This article provides an overview of the requirements for protection of accelerator equipment and introduces the various protection systems. Examples are mainly from LHC, SNS and ESS.Comment: 23 pages, contribution to the CAS - CERN Accelerator School: Advanced Accelerator Physics Course, Trondheim, Norway, 18-29 Aug 201
    • 

    corecore