8,600 research outputs found

    A Component-Based Approach for Specifying Reusable Visual Languages

    Get PDF
    International audienceModel-Driven Engineering (MDE) encourages the use of graphical modeling tools, which facilitate the development process from modeling to coding. Such tools can be designed using the MDE approach into metamodeling environments called metaCASE tools. It turned out that current metaCASE tools still require, in most cases, manual programming to build full tool support for the modeling language, especially for users' native methodologies and representational elements and suffer from gaps in terms of reusability. In this context, we propose MID, a set of metamodels supporting the specification of modeling editors by means of reusable components and explain how representational metamodeling is carried out with it

    From types to type requirements: Genericity for model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-011-0221-0Model-driven engineering (MDE) is a software engineering paradigm that proposes an active use of models during the development process. This paradigm is inherently type-centric, in the sense that models and their manipulation are defined over the types of specific meta-models. This fact hinders the reuse of existing MDE artefacts with other meta-models in new contexts, even if all these meta-models share common characteristics. To increase the reuse opportunities of MDE artefacts, we propose a paradigm shift from type-centric to requirement-centric specifications by bringing genericity into models, meta-models and model management operations. For this purpose, we introduce so-called concepts gathering structural and behavioural requirements for models and meta-models. In this way, model management operations are defined over concepts, enabling the application of the operations to any meta-model satisfying the requirements imposed by the concept. Model templates rely on concepts to define suitable interfaces, hence enabling the definition of reusable model components. Finally, similar to mixin layers, templates can be defined at the meta-model level as well, to define languages in a modular way, as well as layers of functionality to be plugged-in into other meta-models. These ideas have been implemented in MetaDepth, a multi-level meta-modelling tool that integrates action languages from the Epsilon family for model management and code generation.This work has been sponsored by the Spanish Ministry of Science and Innovation with projects METEORIC (TIN2008-02081) and Go Lite (TIN2011-24139), and by the R&D program of the Community of Madrid with project “e-Madrid” (S2009/TIC-1650)

    Encyclopedia of software components

    Get PDF
    Intelligent browsing through a collection of reusable software components is facilitated with a computer having a video monitor and a user input interface such as a keyboard or a mouse for transmitting user selections, by presenting a picture of encyclopedia volumes with respective visible labels referring to types of software, in accordance with a metaphor in which each volume includes a page having a list of general topics under the software type of the volume and pages having lists of software components for each one of the generic topics, altering the picture to open one of the volumes in response to an initial user selection specifying the one volume to display on the monitor a picture of the page thereof having the list of general topics and altering the picture to display the page thereof having a list of software components under one of the general topics in response to a next user selection specifying the one general topic, and then presenting a picture of a set of different informative plates depicting different types of information about one of the software components in response to a further user selection specifying the one component

    A Component-Based Approach for Specifying DSML's Concrete Syntax

    Get PDF
    International audienceModel-Driven Engineering (MDE) encourages the use of graphical modeling tools, which facilitate the development process from modeling to coding. Such tools can be designed using the MDE approach into meta-modeling environments called metaCASE tools. It turned out that current metaCASE tools still require, in most cases, manual programming to build full tool support for the modeling language, especially for users' native methodologies and representational elements and propose limited possibilities in terms of reusability. In this context, we propose MID, a set of meta-models supporting the easy speci cation of modeling editors by means of reusable components and explain how representational meta-modeling is carried out with it

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect
    corecore