1,458 research outputs found

    Embedding based on function approximation for large scale image search

    Full text link
    The objective of this paper is to design an embedding method that maps local features describing an image (e.g. SIFT) to a higher dimensional representation useful for the image retrieval problem. First, motivated by the relationship between the linear approximation of a nonlinear function in high dimensional space and the stateof-the-art feature representation used in image retrieval, i.e., VLAD, we propose a new approach for the approximation. The embedded vectors resulted by the function approximation process are then aggregated to form a single representation for image retrieval. Second, in order to make the proposed embedding method applicable to large scale problem, we further derive its fast version in which the embedded vectors can be efficiently computed, i.e., in the closed-form. We compare the proposed embedding methods with the state of the art in the context of image search under various settings: when the images are represented by medium length vectors, short vectors, or binary vectors. The experimental results show that the proposed embedding methods outperform existing the state of the art on the standard public image retrieval benchmarks.Comment: Accepted to TPAMI 2017. The implementation and precomputed features of the proposed F-FAemb are released at the following link: http://tinyurl.com/F-FAem

    Regularized principal manifolds

    No full text
    Many settings of unsupervised learning can be viewed as quantization problems - the minimization of the expected quantization error subject to some restrictions. This allows the use of tools such as regularization from the theory of (supervised) risk minimization for unsupervised learning. This setting turns out to be closely related to principal curves, the generative topographic map, and robust coding. We explore this connection in two ways: (1) we propose an algorithm for nding principal manifolds that can be regularized in a variety of ways; and (2) we derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give bounds on the covering numbers which allows us to obtain nearly optimal learning rates for certain types of regularization operators. Experimental results demonstrate the feasibility of the approach

    Covariance Eigenvector Sparsity for Compression and Denoising

    Full text link
    Sparsity in the eigenvectors of signal covariance matrices is exploited in this paper for compression and denoising. Dimensionality reduction (DR) and quantization modules present in many practical compression schemes such as transform codecs, are designed to capitalize on this form of sparsity and achieve improved reconstruction performance compared to existing sparsity-agnostic codecs. Using training data that may be noisy a novel sparsity-aware linear DR scheme is developed to fully exploit sparsity in the covariance eigenvectors and form noise-resilient estimates of the principal covariance eigenbasis. Sparsity is effected via norm-one regularization, and the associated minimization problems are solved using computationally efficient coordinate descent iterations. The resulting eigenspace estimator is shown capable of identifying a subset of the unknown support of the eigenspace basis vectors even when the observation noise covariance matrix is unknown, as long as the noise power is sufficiently low. It is proved that the sparsity-aware estimator is asymptotically normal, and the probability to correctly identify the signal subspace basis support approaches one, as the number of training data grows large. Simulations using synthetic data and images, corroborate that the proposed algorithms achieve improved reconstruction quality relative to alternatives.Comment: IEEE Transcations on Signal Processing, 2012 (to appear
    • …
    corecore