46 research outputs found

    Complexity of Road Coloring with Prescribed Reset Words

    Full text link
    By the Road Coloring Theorem (Trahtman, 2008), the edges of any aperiodic directed multigraph with a constant out-degree can be colored such that the resulting automaton admits a reset word. There may also be a need for a particular reset word to be admitted. For certain words it is NP-complete to decide whether there is a suitable coloring of a given multigraph. We present a classification of all words over the binary alphabet that separates such words from those that make the problem solvable in polynomial time. We show that the classification becomes different if we consider only strongly connected multigraphs. In this restricted setting the classification remains incomplete.Comment: To be presented at LATA 201

    Parameterized Complexity of Synchronization and Road Coloring

    Full text link
    First, we close the multivariate analysis of a canonical problem concerning short reset words (SYN), as it was started by Fernau et al. (2013). Namely, we prove that the problem, parameterized by the number of states, does not admit a polynomial kernel unless the polynomial hierarchy collapses. Second, we consider a related canonical problem concerning synchronizing road colorings (SRCP). Here we give a similar complete multivariate analysis. Namely, we show that the problem, parameterized by the number of states, admits a polynomial kernel and we close the previous research of restrictions to particular values of both the alphabet size and the maximum word length

    Algebraic synchronization criterion and computing reset words

    Full text link
    We refine a uniform algebraic approach for deriving upper bounds on reset thresholds of synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain upper bounds for the reset thresholds of automata with a short word of a small rank. The results are applied to make several improvements in the area. We improve the best general upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an nn-state synchronizing decoder has a reset word of length at most O(nlog3n)O(n \log^3 n). In addition to that, we prove that the expected reset threshold of a uniformly random synchronizing binary nn-state decoder is at most O(nlogn)O(n \log n). We also show that for any non-unary alphabet there exist decoders whose reset threshold is in Θ(n)\varTheta(n). We prove the \v{C}ern\'{y} conjecture for nn-state automata with a letter of rank at most 6n63\sqrt[3]{6n-6}. In another corollary, based on the recent results of Nicaud, we show that the probability that the \v{C}ern\'y conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states, and also that the expected value of the reset threshold of an nn-state random synchronizing binary automaton is at most n3/2+o(1)n^{3/2+o(1)}. Moreover, reset words of lengths within all of our bounds are computable in polynomial time. We present suitable algorithms for this task for various classes of automata, such as (quasi-)one-cluster and (quasi-)Eulerian automata, for which our results can be applied.Comment: 18 pages, 2 figure

    Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics

    Get PDF

    Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics

    Get PDF

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Algebraic synchronization criterion and computing reset words

    Full text link
    We refine a uniform algebraic approach for deriving upper bounds on reset thresholds of synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain new upper bounds for automata with a short word of small rank. The results are applied to make several improvements in the area. In particular, we improve the upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an n-state synchronizing decoder has a reset word of length at most O(nlog3n). In addition to that, we prove that the expected reset threshold of a uniformly random synchronizing binary n-state decoder is at most O(nlog n). We prove the Černý conjecture for n-state automata with a letter of rank ≤6n−63. In another corollary, we show that the probability that the Černý conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states, and that the expected value of the reset threshold is at most n3/2+o(1). Moreover, all of our bounds are constructible. We present suitable polynomial algorithms for the task of finding a reset word of length within our bounds. © 201

    Algebraic synchronization criterion and computing reset words

    Full text link
    We refine results about relations between Markov chains and synchronizing automata. We express the condition that an automaton is synchronizing in terms of linear algebra, and obtain upper bounds for the reset thresholds of automata with a short word of a small rank. The results are applied to make several improvements in the area. We improve the best general upper bound for reset thresholds of finite prefix codes (Huffman codes): we show that an n-state synchronizing decoder has a reset word of length at most O(n log3 n). Also, we prove the Černý conjecture for n-state automata with a letter of rank at most 3√6n-6. In another corollary, based on the recent results of Nicaud, we show that the probability that the Čern conjecture does not hold for a random synchronizing binary automaton is exponentially small in terms of the number of states. It follows that the expected value of the reset threshold of an n-state random synchronizing binary automaton is at most n7/4+o(1). Moreover, reset words of the lengths within our bounds are computable in polynomial time. We present suitable algorithms for this task for various classes of automata for which our results can be applied. These include (quasi-)one-cluster and (quasi-)Eulerian automata. © Springer-Verlag Berlin Heidelberg 2015
    corecore