8,912 research outputs found

    Constraint-Based Qualitative Simulation

    Full text link
    We consider qualitative simulation involving a finite set of qualitative relations in presence of complete knowledge about their interrelationship. We show how it can be naturally captured by means of constraints expressed in temporal logic and constraint satisfaction problems. The constraints relate at each stage the 'past' of a simulation with its 'future'. The benefit of this approach is that it readily leads to an implementation based on constraint technology that can be used to generate simulations and to answer queries about them.Comment: 10 pages, to appear at the conference TIME 200

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    About Norms and Causes

    Full text link
    Knowing the norms of a domain is crucial, but there exist no repository of norms. We propose a method to extract them from texts: texts generally do not describe a norm, but rather how a state-of-affairs differs from it. Answers concerning the cause of the state-of-affairs described often reveal the implicit norm. We apply this idea to the domain of driving, and validate it by designing algorithms that identify, in a text, the "basic" norms to which it refers implicitly

    A cookbook for temporal conceptual data modelling with description logic

    Get PDF
    We design temporal description logics suitable for reasoning about temporal conceptual data models and investigate their computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. In the temporal dimension, they capture future and past temporal operators on concepts, flexible and rigid roles, the operators `always' and `some time' on roles, data assertions for particular moments of time and global concept inclusions. The logics are interpreted over the Cartesian products of object domains and the flow of time (Z,<), satisfying the constant domain assumption. We prove that the most expressive of our temporal description logics (which can capture lifespan cardinalities and either qualitative or quantitative evolution constraints) turn out to be undecidable. However, by omitting some of the temporal operators on concepts/roles or by restricting the form of concept inclusions we obtain logics whose complexity ranges between PSpace and NLogSpace. These positive results were obtained by reduction to various clausal fragments of propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about temporal data models

    Tailoring temporal description logics for reasoning over temporal conceptual models

    Get PDF
    Temporal data models have been used to describe how data can evolve in the context of temporal databases. Both the Extended Entity-Relationship (EER) model and the Unified Modelling Language (UML) have been temporally extended to design temporal databases. To automatically check quality properties of conceptual schemas various encoding to Description Logics (DLs) have been proposed in the literature. On the other hand, reasoning on temporally extended DLs turn out to be too complex for effective reasoning ranging from 2ExpTime up to undecidable languages. We propose here to temporalize the ‘light-weight’ DL-Lite logics obtaining nice computational results while still being able to represent various constraints of temporal conceptual models. In particular, we consider temporal extensions of DL-Lite^N_bool, which was shown to be adequate for capturing non-temporal conceptual models without relationship inclusion, and its fragment DL-Lite^N_core with most primitive concept inclusions, which are nevertheless enough to represent almost all types of atemporal constraints (apart from covering)

    Automatic case acquisition from texts for process-oriented case-based reasoning

    Get PDF
    This paper introduces a method for the automatic acquisition of a rich case representation from free text for process-oriented case-based reasoning. Case engineering is among the most complicated and costly tasks in implementing a case-based reasoning system. This is especially so for process-oriented case-based reasoning, where more expressive case representations are generally used and, in our opinion, actually required for satisfactory case adaptation. In this context, the ability to acquire cases automatically from procedural texts is a major step forward in order to reason on processes. We therefore detail a methodology that makes case acquisition from processes described as free text possible, with special attention given to assembly instruction texts. This methodology extends the techniques we used to extract actions from cooking recipes. We argue that techniques taken from natural language processing are required for this task, and that they give satisfactory results. An evaluation based on our implemented prototype extracting workflows from recipe texts is provided.Comment: Sous presse, publication pr\'evue en 201

    A Temporal extension of Prolog

    Get PDF
    AbstractTemporal Prolog, a temporal logic extension of PROLOG, is presented. The primary criterion for the model selection has been its natural embedment into the logic programming paradigm. Under strong efficiency constraints, a first-order “reified” logic has been taken as a basis for the implementation. Allen's temporal constraint algorithm has been extended for treatment of retractable constraints. Their embedment into Temporal Prolog can be viewed as an instance of the Constraint Logic Programming paradigm. An example inspired by K. Forbus's Qualitative Process Theory illustrates how qualitative simulation and related tasks can be formulated in Temporal Prolog in a transparent and declarative way
    corecore