435 research outputs found

    Magnetoencephalography

    Get PDF
    This is a practical book on MEG that covers a wide range of topics. The book begins with a series of reviews on the use of MEG for clinical applications, the study of cognitive functions in various diseases, and one chapter focusing specifically on studies of memory with MEG. There are sections with chapters that describe source localization issues, the use of beamformers and dipole source methods, as well as phase-based analyses, and a step-by-step guide to using dipoles for epilepsy spike analyses. The book ends with a section describing new innovations in MEG systems, namely an on-line real-time MEG data acquisition system, novel applications for MEG research, and a proposal for a helium re-circulation system. With such breadth of topics, there will be a chapter that is of interest to every MEG researcher or clinician

    Cognitive Impairments in Schizophrenia as Assessed Through Activation and Connectivity Measures of Magnetoencephalography (MEG) Data

    Get PDF
    The cognitive dysfunction present in patients with schizophrenia is thought to be driven in part by disorganized connections between higher-order cortical fields. Although studies utilizing electroencephalography (EEG), PET and fMRI have contributed significantly to our understanding of these mechanisms, magnetoencephalography (MEG) possesses great potential to answer long-standing questions linking brain interactions to cognitive operations in the disorder. Many experimental paradigms employed in EEG and fMRI are readily extendible to MEG and have expanded our understanding of the neurophysiological architecture present in schizophrenia. Source reconstruction techniques, such as adaptive spatial filtering, take advantage of the spatial localization abilities of MEG, allowing us to evaluate which specific structures contribute to atypical cognition in schizophrenia. Finally, both bivariate and multivariate functional connectivity metrics of MEG data are useful for understanding how these interactions in the brain are impaired in schizophrenia, and how cognitive and clinical outcomes are affected as a result. We also present here data from our own laboratory that illustrates how some of these novel functional connectivity measures, specifically imaginary coherence (IC), are quite powerful in relating disconnectivity in the brain to characteristic behavioral findings in the disorder

    The hippocampus as the switchboard between perception and memory.

    Get PDF
    Adaptive memory recall requires a rapid and flexible switch from external perceptual reminders to internal mnemonic representations. However, owing to the limited temporal or spatial resolution of brain imaging modalities used in isolation, the hippocampal–cortical dynamics supporting this process remain unknown. We thus employed an object-scene cued recall paradigm across two studies, including intracranial electroencephalography (iEEG) and high-density scalp EEG. First, a sustained increase in hippocampal high gamma power (55 to 110 Hz) emerged 500 ms after cue onset and distinguished successful vs. unsuccessful recall. This increase in gamma power for successful recall was followed by a decrease in hippocampal alpha power (8 to 12 Hz). Intriguingly, the hippocampal gamma power increase marked the moment at which extrahippocampal activation patterns shifted from perceptual cue toward mnemonic target representations. In parallel, source-localized EEG alpha power revealed that the recall signal progresses from hippocampus to posterior parietal cortex and then to medial prefrontal cortex. Together, these results identify the hippocampus as the switchboard between perception and memory and elucidate the ensuing hippocampal–cortical dynamics supporting the recall process.post-print1844 K

    Low-frequency oscillatory correlates of auditory predictive processing in cortical-subcortical networks: a MEG-study

    Get PDF
    Emerging evidence supports the role of neural oscillations as a mechanism for predictive information processing across large-scale networks. However, the oscillatory signatures underlying auditory mismatch detection and information flow between brain regions remain unclear. To address this issue, we examined the contribution of oscillatory activity at theta/alpha-bands (4–8/8–13 Hz) and assessed directed connectivity in magnetoencephalographic data while 17 human participants were presented with sound sequences containing predictable repetitions and order manipulations that elicited prediction-error responses. We characterized the spectro-temporal properties of neural generators using a minimum-norm approach and assessed directed connectivity using Granger Causality analysis. Mismatching sequences elicited increased theta power and phase-locking in auditory, hippocampal and prefrontal cortices, suggesting that theta-band oscillations underlie prediction-error generation in cortical-subcortical networks. Furthermore, enhanced feedforward theta/alpha-band connectivity was observed in auditory-prefrontal networks during mismatching sequences, while increased feedback connectivity in the alpha-band was observed between hippocampus and auditory regions during predictable sounds. Our findings highlight the involvement of hippocampal theta/alpha-band oscillations towards auditory prediction-error generation and suggest a spectral dissociation between inter-areal feedforward vs. feedback signalling, thus providing novel insights into the oscillatory mechanisms underlying auditory predictive processing

    Neural correlates of intentional switching from ternary to binary meter in a musical hemiola pattern

    Get PDF
    Musical rhythms are often perceived and interpreted within a metrical framework that integrates timing information hierarchically based on interval ratios. Endogenous timing processes facilitate this metrical integration and allow us using the sensory context for predicting when an expected sensory event will happen (“predictive timing”). Previously, we showed that listening to metronomes and subjectively imagining the two different meters of march and waltz modulated the resulting auditory evoked responses in the temporal lobe and motor-related brain areas such as the motor cortex, basal ganglia, and cerebellum. Here we further explored the intentional transitions between the two metrical contexts, known as hemiola in the Western classical music dating back to the sixteenth century. We examined MEG from 12 musicians while they repeatedly listened to a sequence of 12 unaccented clicks with an interval of 390 ms, and tapped to them with the right hand according to a 3 + 3 + 2 + 2 + 2 hemiola accent pattern. While participants listened to the same metronome sequence and imagined the accents, their pattern of brain responses significantly changed just before the “pivot” point of metric transition from ternary to binary meter. Until 100 ms before the pivot point, brain activities were more similar to those in the simple ternary meter than those in the simple binary meter, but the pattern was reversed afterwards. A similar transition was also observed at the downbeat after the pivot. Brain areas related to the metric transition were identified from source reconstruction of the MEG using a beamformer and included auditory cortices, sensorimotor and premotor cortices, cerebellum, inferior/middle frontal gyrus, parahippocampal gyrus, inferior parietal lobule, cingulate cortex, and precuneus. The results strongly support that predictive timing processes related to auditory-motor, fronto-parietal, and medial limbic systems underlie metrical representation and its transitions

    Building Mental Experiences: From Scenes to Events

    Get PDF
    Mental events are central to everyday cognition, be it our continuous perception of the world, recalling autobiographical memories, or imagining the future. Little is known about the fine-grained temporal dynamics of these processes. Given the apparent predominance of scene imagery across cognition, in this thesis I used magnetoencephalography to investigate whether and how activity in the hippocampus and ventromedial prefrontal cortex (vmPFC) supports the mental construction of scenes and the events to which they give rise. In the first experiment, participants gradually imagined scenes and also closely matched non-scene arrays; this allowed me to assess whether any brain regions showed preferential responses to scene imagery. The anterior hippocampus and vmPFC were particularly engaged by the construction of scene imagery, with the vmPFC driving hippocampal activity. In the second experiment, I found that certain objects – those that were space-defining – preferentially engaged the vmPFC and superior temporal gyrus during scene construction, providing insight into how objects affect the creation of scene representations. The third experiment involved boundary extension during scene perception, permitting me to examine how single scenes might be prepared for inclusion into events. I observed changes in evoked responses just 12.5-58 ms after scene onset over fronto-temporal sensors, with again the vmPFC exerting a driving influence on other brain regions, including the hippocampus. In the final experiment, participants watched brief movies of events built from a series of scenes or non-scene patterns. A difference in evoked responses between the two event types emerged during the first frame of the movies, the primary source of which was shown to be the hippocampus. The enduring theme of the results across experiments was scene-specific engagement of the hippocampus and vmPFC, with the latter being the driving influence. Overall, this thesis provides insights into the neural dynamics of how scenes are built, made ready for inclusion into unfolding mental episodes, and then linked to produce our seamless experience of the world

    Spatiotemporal precision of neuroimaging in psychiatry

    Get PDF
    Aberrant patterns of cognition, perception, and behaviour seen in psychiatric disorders are thought to be driven by a complex interplay of neural processes that evolve at a rapid temporal scale. Understanding these dynamic processes in vivo in humans has been hampered by a trade-off between the spatial and temporal resolution inherent to current neuroimaging technology. A recent trend in psychiatric research has been the use of high temporal resolution imaging, particularly magnetoencephalography (MEG), often in conjunction with sophisticated machine learning decoding techniques. Developments here promise novel insights into the spatiotemporal dynamics of cognitive phenomena, including domains relevant to psychiatric illness such as reward and avoidance learning, memory, and planning. This review considers recent advances afforded by exploiting this increased spatiotemporal precision, with specific reference to applications the seek to drive a mechanistic understanding of psychopathology and the realisation of preclinical translation

    The Connectome Visualization Utility: Software for Visualization of Human Brain Networks

    Get PDF
    In analysis of the human connectome, the connectivity of the human brain is collected from multiple imaging modalities and analyzed using graph theoretical techniques. The dimensionality of human connectivity data is high, and making sense of the complex networks in connectomics requires sophisticated visualization and analysis software. The current availability of software packages to analyze the human connectome is limited. The Connectome Visualization Utility (CVU) is a new software package designed for the visualization and network analysis of human brain networks. CVU complements existing software packages by offering expanded interactive analysis and advanced visualization features, including the automated visualization of networks in three different complementary styles and features the special visualization of scalar graph theoretical properties and modular structure. By decoupling the process of network creation from network visualization and analysis, we ensure that CVU can visualize networks from any imaging modality. CVU offers a graphical user interface, interactive scripting, and represents data uses transparent neuroimaging and matrix-based file types rather than opaque application-specific file formats
    • …
    corecore