13 research outputs found

    Controlling speculative execution through a virtually ordered memory system

    Get PDF
    Processors which extract parallelism through speculative execution must be able to identify when mis-speculation has occurred. The three places where mis-speculation can occur are register accesses, control flow prediction and memory accesses. Controlling register and control flow speculation has been well studied, but no scalable techniques for identifying memory dependence violations have been identified. Since speculative execution occurs out of order this requires tracking the causal order, as well as the addresses of memory accesses. This thesis uses simulations to investigate tracking the causal order of memory accesses using explicit tags known as virtual timestamps, a distributed and scalable method. Realizable virtual timestamps are necessarily restricted in length and it is demonstrated that naive allocation schemes seriously constrain execution by inefficiently allocating virtual timestamps. Efficiently allocating virtual timestamps requires analysis of the number required by each section of code. Basic statically and dynamically evaluated analysis methods are established to avoid virtual timestamp allocation becoming a resource bottleneck. The same analysis is also used to efficiently allocate state saving resources in a fixed hardware order. The hardware order provides an alternative way of maintaining the causal order using a simple hardware organization. The ability to predict the resources required by regions of code is used as a way of selecting instructions to execute speculatively. This enables resources to be allocated efficiently and is shown to allow large amounts of parallelism to be extracted. It also promotes the effectiveness of speculative execution by issuing less instructions that will ultimately be rolled back. Using a hierarchy of hardware ordering modules, themselves ordered by explicit virtual timestamps, a scalable ordering system is proposed. This hierarchy forms the basis of a twisted memory system, a multiple version memory system capable of identifying speculative memory dependence violations. The preliminary investigations presented here show that twisted memory has the potential to support aggressive speculative parallel execution. Particular attention is paid to memory bandwidth requirements

    Mapping parallelism to heterogeneous processors

    Get PDF
    Most embedded devices are based on heterogeneous Multiprocessor System on Chips (MPSoCs). These contain a variety of processors like CPUs, micro-controllers, DSPs, GPUs and specialised accelerators. The heterogeneity of these systems helps in achieving good performance and energy efficiency but makes programming inherently difficult. There is no single programming language or runtime to program such platforms. This thesis makes three contributions to these problems. First, it presents a framework that allows code in Single Program Multiple Data (SPMD) form to be mapped to a heterogeneous platform. The mapping space is explored, and it is shown that the best mapping depends on the metric used. Next, a compiler framework is presented which bridges the gap between the high -level programming model of OpenMP and the heterogeneous resources of MPSoCs. It takes OpenMP programs and generates code which runs on all processors. It delivers programming ease while exploiting heterogeneous resources. Finally, a compiler-based approach to runtime power management for heterogeneous cores is presented. Given an externally provided budget, the approach generates heterogeneous, partitioned code that attempts to give the best performance within that budget

    Architecting, programming, and evaluating an on-chip incoherent multi-processor memory hierarchy

    Get PDF
    New architectures for extreme-scale computing need to be designed for higher energy efficiency than current systems. The DOE-funded Traleika Glacier architecture is a recently-proposed extreme-scale manycore that radically simplifies the architecture, and proposes a cluster-based on-chip memory hierarchy without hardware cache coherence. Programming for such an environment, which can use scratchpads or incoherent caches, is challenging. Hence, this thesis focuses on architecting, programming, and evaluating an on-chip incoherent multiprocessor memory hierarchy. This thesis starts by examining incoherent multiprocessor caches. It proposes ISA support for data movement in such an environment, and two relatively user-friendly programming approaches that use the ISA. The ISA support is largely based on writeback and self-invalidation instructions, while the programming approaches involve shared-memory programming either inside a cluster only, or across clusters. The thesis also includes compiler transformations for such an incoherent cache hierarchy. Our simulation results show that, with our approach, the execution of applications on incoherent cache hierarchies can deliver reasonable performance. For execution within a cluster, the average execution time of our applications is only 2% higher than with hardware cache coherence. For execution across multiple clusters, our applications run on average 20% faster than a naive scheme that pushes all the data to the last-level shared cache. Compiler transformations for both regular and irregular applications are shown to deliver substantial performance increases. This thesis then considers scratchpads. It takes the design in the Traleika Glacier architecture and performs a simulation-based evaluation. It shows how the hardware exploits available concurrency from parallel applications. However, it also shows the limitations of the current software stack, which lacks smart memory management and high-level hints for the scheduler

    Structured Parallel Programming and Cache Coherence in Multicore Architectures

    Get PDF
    It is clear that multicore processors have become the building blocks of today’s high-performance computing platforms. The advent of massively parallel single-chip microprocessors further emphasizes the gap that exists between parallel architectures and parallel programming maturity. Our research group, starting from the experiences on distributed and shared memory multiprocessor, was one of the first to propose a Structured Parallel Programming approach to bridge this gap. In this scenario, one of the biggest problems is that an application’s performance is often affected by the sharing pattern of data and its impact on Cache Coherence. Currently multicore platforms rely on hardware or automatic cache coherence techniques that allow programmers to develop programs without taking into account the problem. It is well known that standard coherency protocols are inefficient for certain data communication patterns and these inefficiencies will be amplified by the increased core number and the complex memory hierarchies. Following a structured parallelism approach, our methodology to attack these problems is based on two interrelated issues: structured parallelism paradigms and cost models (or performance models). Evaluating the performance of a program, although widely studied, is still an open problem in the research community and, notably, specific cost models to de- scribe multicores are missing. For this reason in this thesis, we define an abstract model for cache coherent architectures, which is able to capture the essential elements and the qualitative behaviors of multicore-based systems. Furthermore, we show how this abstract model combined with well known performance modelling techniques, such as analytical modelling (e.g., queueing models and stochastic process algebras) or simulations, provide an application- and architecture-dependent cost model to predict structured parallel applications performances. Starting out from the behavior and performance predictability of structured parallelism schemes, in this thesis we address the issue of cache coherence in multicore architectures, following an algorithm-dependent approach, a particular kind of software cache coherence solution characterized by explicit cache management strategies, which are specific of the algorithm to be executed. Notably, we ensure parallel correctness by exploiting architecture-specific mechanisms and by defining proper data structures in order to “emulate” cache coherence solutions in an efficient way for each computation. Algorithm-dependent cache coherence can be efficiently implemented at the support level of structured parallelism paradigms, with absolute transparency with respect to the application programmer. Moreover, by using the cost model, in this thesis we study and compare different algorithm-dependent implementations, such as those based on automatic cache coherence with respect to an original, non-automatic and lock-free solution based on interprocessor communications. Notably, with this latter implementation, in some cases, we are able to reduce the number of memory accesses, cache transfers and synchronizations and increasing computation parallelism with respect to the use of automatic cache coherence. Current architectures do not usually allow disabling automatic cache coherence. However, the emergence of many-core architectures somewhat changed the scenario, so that some architectures, such as the Tilera TilePro64, allow to control and disable the automatic cache coherence facilities. For this reason, in this thesis we finally apply our methodology to TilePro64 platform in order provide a further validation of the results obtained by our cost model

    Runtime support for load balancing of parallel adaptive and irregular applications

    Get PDF
    Applications critical to today\u27s engineering research often must make use of the increased memory and processing power of a parallel machine. While advances in architecture design are leading to more and more powerful parallel systems, the software tools needed to realize their full potential are in a much less advanced state. In particular, efficient, robust, and high-performance runtime support software is critical in the area of dynamic load balancing. While the load balancing of loosely synchronous codes, such as field solvers, has been studied extensively for the past 15 years, there exists a class of problems, known as asynchronous and highly adaptive , for which the dynamic load balancing problem remains open. as we discuss, characteristics of this class of problems render compile-time or static analysis of little benefit, and complicate the dynamic load balancing task immensely.;We make two contributions to this area of research. The first is the design and development of a runtime software toolkit, known as the Parallel Runtime Environment for Multi-computer Applications, or PREMA, which provides interprocessor communication, a global namespace, a framework for the implementation of customized scheduling policies, and several such policies which are prevalent in the load balancing literature. The PREMA system is designed to support coarse-grained domain decompositions with the goals of portability, flexibility, and maintainability in mind, so that developers will quickly feel comfortable incorporating it into existing codes and developing new codes which make use of its functionality. We demonstrate that the programming model and implementation are efficient and lead to the development of robust and high-performance applications.;Our second contribution is in the area of performance modeling. In order to make the most effective use of the PREMA runtime software, certain parameters governing its execution must be set off-line. Optimal values for these parameters may be determined through repeated executions of the target application; however, this is not always possible, particularly in large-scale environments and long-running applications. We present an analytic model that allows the user to quickly and inexpensively predict application performance and fine-tune applications built on the PREMA platform

    Compiler-Enforced Cache Coherence Using a Functional Language

    Get PDF

    Compiler Techniques for Optimizing Communication and Data Distribution for Distributed-Memory Computers

    Get PDF
    Advanced Research Projects Agency (ARPA)National Aeronautics and Space AdministrationOpe

    A Compiler-Directed Cache Coherence Scheme with Improved Intertask Locality

    No full text
    In this paper 1 , we introduce a compiler-directed coherence scheme which can exploit most of the temporal and spatial locality across task boundaries. It requires only an extended tag field per cache word, one modified memory access instruction, and a counter called the epoch counter in each processor. By using the epoch counter as a system-wide version number, the scheme simplifies the cache hardware of previous version control [5] or timestamp-based schemes [12], but still exploits most of the temporal and spatial locality across task boundaries. We present a compiler algorithm to generate the appropriate memory access instructions for the proposed scheme. The algorithm is based on a data flow analysis technique. It identifies potential stale references by examining memory reference patterns in a source program. 1 Introduction Reducing memory latency is critical to the performance of large-scale parallel systems. Due to the temporal and spatial locality of memory reference patter..

    Scheduled routing for the NuMesh

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 66-68).by Milan Singh Minsky.M.S
    corecore